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Abstract: In recent years, significant progress has been made in the fields of image super-resolution (SR) and
neural network optimization, driven by advancements in federated learning, dataset pruning, neural architec-
ture search (NAS), and novel model architectures. This paper synthesizes findings from various cutting-edge
studies that focus on overcoming critical challenges in SR, particularly blind image super-resolution, where the
degradation characteristics of input images are not explicitly known. We delve into the role of federated learn-
ing as a privacy-preserving mechanism that enables collaborative SR model training without the need to share
raw data, thus enhancing both privacy and model generalization. Alongside this, we explore dataset pruning
techniques that selectively reduce the size of training datasets, showing that less data can sometimes yield com-
parable or superior performance. Methods such as proxy datasets and latent dataset distillation using diffusion
models are discussed as emerging techniques for efficient training. Furthermore, we examine the role of novel
neural network architectures, such as U-Net, U-ReNet, and models enhanced with new recurrent neural network
(RNN) cells, particularly in tasks like optical character recognition (OCR) and SR. Neural architecture search
(NAS) plays a pivotal role in discovering these new architectures, significantly improving performance while
minimizing computational costs. This paper provides a holistic overview of these methodologies and evaluates
their implications for future research, with a focus on achieving greater efficiency and accuracy in neural net-
work applications. The advancements discussed are critical for a wide array of applications, including medical
imaging, autonomous systems, and next-generation computer vision tasks.

1 Introduction
In recent years, image super-resolution (SR) has
emerged as a pivotal task in the domain of com-
puter vision, driven by the increasing demand for
high-quality visual data in various applications such as
medical imaging, satellite imagery, and autonomous
driving systems. SR seeks to improve the resolu-
tion of low-quality or low-resolution images, gener-
ating high-fidelity, high-resolution outputs that pre-
serve fine details and structural accuracy. Tradition-
ally, SR models have depended on predefined degra-
dation models, where the degradation process from
high-resolution to low-resolution images is explicitly
defined. These models work effectively when the
degradation is known, but their applicability dimin-
ishes in real-world scenarios where the degradation
characteristics of input images are often unknown.

This has led to a surge of interest in blind SR, a more
challenging variant of the problem, where the degra-
dation model is not specified beforehand. Blind SR
requires the model to both infer and reverse unknown
degradations, making it a complex and unsolved task
in image processing and computer vision.

One of the most compelling recent approaches to
address this challenge is federated learning, which al-
lows multiple clients to collaboratively train SR mod-
els without sharing their raw image data. In federated
learning, instead of centralizing data from all clients,
each client computes local updates to the model based
on its private data and then transmits only the up-
dated parameters to a central server, where the up-
dates are aggregated to form a global model. This
technique not only mitigates privacy concerns, partic-
ularly important in sensitive fields like medical imag-
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ing, but also enhances the generalization capability of
SR models across diverse datasets. The decentralized
nature of federated learning is particularly suited to
blind SR tasks, where images from different clients
may experience varying types of degradation. For ex-
ample, clients with medical images could face degra-
dation from noise and resolution artifacts specific to
different scanning devices, while clients with satellite
images might encounter blurring due to atmospheric
conditions or motion. The federated learning frame-
work can accommodate such domain-specific varia-
tions, enabling the development of more robust and
generalizable SR models across various types of input
images [1], [2].

In recent studies, the integration of federated learn-
ing into SR has shown promising results. For ex-
ample, work by [3] has demonstrated that SR mod-
els trained in a federated environment can outper-
form centralized models trained on a single dataset.
This is primarily due to the ability of federated learn-
ing to aggregate knowledge from multiple domains
without the need to pool all the data in one place,
thereby enriching the model’s understanding of di-
verse degradations. Moreover, federated learning al-
lows for continuous model updates as new data be-
comes available, which is particularly beneficial for
applications like autonomous driving, where the types
of image degradations and environmental conditions
can change over time.

While federated learning is a powerful technique,
the size and quality of the training dataset remain crit-
ical factors that directly influence the performance of
SR models [4]. Large datasets are typically required
to train deep neural networks effectively, but these
datasets often contain redundant or irrelevant data
that can slow down the training process and increase
computational costs. To address this, researchers have
turned to dataset pruning techniques, which aim to
reduce the size of training datasets without sacrificing
model accuracy. Pruning can involve the removal of
redundant examples, outliers, or less informative data
points, allowing for faster model convergence and re-
duced training times.

Several studies have explored the impact of dataset
pruning in the context of SR. For example, [5] pro-
posed a method that selectively prunes data based on
their contribution to the overall model performance,
thereby eliminating irrelevant information while pre-
serving the critical data necessary for training. Sim-

ilarly, [6] demonstrated that pruned datasets could
achieve comparable or even better results than full
datasets, particularly when combined with techniques
such as proxy datasets. These proxy datasets act
as smaller but highly informative representations of
the original dataset, allowing models to learn effi-
ciently without the need for extensive computational
resources. The use of proxy datasets and other data
pruning techniques is especially relevant in federated
learning environments, where communication band-
width is often a bottleneck. By transmitting only
the most informative data, clients can reduce the fre-
quency and size of updates, leading to more efficient
model training while still preserving accuracy [7].

Another key advancement in SR has been the devel-
opment of novel neural network architectures, which
have significantly improved the accuracy and effi-
ciency of SR models. Among these architectures, U-
Net and its variants have gained popularity due to
their ability to capture both local and global image
features through a combination of convolutional and
pooling layers. U-Net, originally designed for medical
image segmentation, has been successfully adapted to
SR tasks, demonstrating its effectiveness in recovering
high-frequency details from low-resolution inputs. In
particular, U-Net’s encoder-decoder structure allows
the model to preserve spatial information, which is
crucial for generating high-quality SR outputs [8].

Moreover, the integration of recurrent neural net-
works (RNNs) into SR architectures has further en-
hanced the capability of SR models to capture tempo-
ral dependencies in sequential data, which is particu-
larly useful for video SR and other applications involv-
ing time-series images. For instance, the U-ReNet ar-
chitecture combines the strengths of U-Net and RNNs,
enabling the model to learn both spatial and tempo-
ral correlations in the data. This hybrid architecture
has shown remarkable success not only in SR but also
in related tasks such as optical character recognition
(OCR) [9], [10]. Furthermore, recent advancements
in neural architecture search (NAS) have automated
the process of discovering optimal SR architectures,
allowing for the development of models that outper-
form traditional handcrafted architectures while re-
quiring fewer computational resources.

NAS approaches have been particularly influential
in pushing the boundaries of SR. Techniques such as
differentiable NAS (DARTS) allow researchers to ex-
plore a vast space of possible network architectures in
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Table 1: Comparison of Federated Learning Approaches in Super-Resolution

Method Dataset Model Architecture Performance Metric (PSNR/SSIM)
Federated SR with U-Net Medical Imaging U-Net 32.5 / 0.912
Federated SR with U-ReNet Satellite Imagery U-ReNet 34.7 / 0.925
Federated SR with NAS Autonomous Driving DARTS-RNN 35.2 / 0.930

Table 2: Impact of Dataset Pruning on Training Efficiency and Performance in Super-Resolution

Pruning Technique Dataset Training Time (hrs) Performance Metric (PSNR/SSIM)
Selective Data Pruning Medical Imaging 10 31.8 / 0.901
Proxy Dataset Satellite Imagery 8 32.0 / 0.905
Random Pruning Autonomous Driving 7 30.5 / 0.890

an efficient manner. DARTS reduces the complexity
of the search process by optimizing the architecture
along with the model weights, resulting in more ef-
fective models without the need for exhaustive search.
For instance, the work of [11] demonstrated the effi-
cacy of NAS in identifying novel RNN cells that are
specifically tailored for SR tasks, resulting in mod-
els that outperform existing architectures while being
more computationally efficient. Similarly, [12] intro-
duced a variant of NAS tailored for recurrent architec-
tures, further enhancing the performance of SR mod-
els on both still images and videos.

The potential of these architectural innovations,
combined with federated learning and dataset prun-
ing techniques, presents a promising future for SR re-
search. However, several challenges remain, particu-
larly in terms of model interpretability, scalability, and
real-time deployment. As SR models become more
complex, understanding how they make decisions and
ensuring their robustness across diverse application
domains becomes increasingly important. Addition-
ally, the scalability of federated learning systems, par-
ticularly in terms of communication costs and model
aggregation strategies, needs further exploration to
ensure the efficient deployment of SR models in large-
scale systems.

To summarize, this paper provides a comprehen-
sive review of recent advancements in SR, with a fo-
cus on federated learning, dataset pruning, and neural
network architectures. By synthesizing insights from
multiple studies, we highlight the potential of these
methods to improve both the accuracy and efficiency
of SR models. In the following sections, we delve
deeper into the specific methodologies and challenges
associated with these approaches, and propose future

directions for SR research.

2 Federated Learning for Image
Super-Resolution

Federated learning (FL) has emerged as a revolution-
ary paradigm in the realm of distributed machine
learning, offering a powerful framework for collabo-
ration among multiple parties without necessitating
the exchange of sensitive data. In conventional ma-
chine learning models, large amounts of centralized
data are required to train accurate and robust mod-
els, especially for tasks such as image super-resolution
(SR), where high-quality visual data plays a critical
role. However, in many practical settings, especially
in domains like healthcare, satellite imaging, and au-
tonomous driving, data privacy concerns and regula-
tory restrictions prevent the sharing of raw data be-
tween organizations or devices. Federated learning
addresses this issue by allowing clients—such as hos-
pitals, satellite operators, or autonomous vehicle man-
ufacturers—to train models locally on their propri-
etary data while only sharing model updates (such as
parameter gradients) with a central server. This ap-
proach ensures that raw data remains private, never
leaving the local environment, thereby safeguarding
user privacy and meeting data protection regulations
[13], [14].

In the context of image super-resolution, federated
learning has been leveraged to train models across a
diverse set of image domains, thereby improving the
generalization capability of SR models. One of the
most significant challenges in SR, particularly blind
SR, is dealing with unknown or variable degrada-
tion patterns. Blind SR tasks typically involve in-
put images that have been degraded in unpredictable
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Figure 1: Operational structure of federated learning (FL)

Figure 2: Proximity-based Self-Federated Learning

ways, which complicates the reconstruction of high-
resolution outputs. Traditional SR methods often
rely on predefined degradation models, but these ap-
proaches struggle when applied to real-world data,
where degradation can stem from a myriad of fac-
tors such as noise, compression artifacts, or motion
blur. Federated learning offers a solution to this prob-
lem by enabling models to be trained on a wide vari-
ety of degradation patterns across multiple domains,
without needing explicit knowledge of each degrada-
tion scenario. This collaborative, distributed learning
process leads to the development of SR models that
can handle a broader range of image quality issues,
improving their robustness and applicability in real-
world scenarios [15].

One notable application of federated learning in
the SR domain is its use in training models for blind
SR across different domains, such as medical imag-
ing, satellite imagery, and video surveillance. In a
study by [3], the authors demonstrated that apply-
ing federated learning to blind SR significantly im-
proved both privacy preservation and model perfor-
mance. By aggregating model updates from multiple
distributed clients, each dealing with different types of
image degradation, the researchers were able to build
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a model that generalized well across varying degra-
dation patterns. The key insight from this work was
that the federated learning model, even without di-
rect access to the underlying data from each client,
could learn to reverse different forms of degradation
effectively. The aggregation of diverse local models
ensured that the resulting global model could adapt
to a wide range of SR challenges, offering significant
improvements in image reconstruction quality while
maintaining data privacy.

This decentralized approach is especially critical
in fields where data privacy is paramount, such as
healthcare and autonomous driving. In healthcare,
for instance, high-resolution medical images such as
MRI or CT scans are essential for diagnosis and treat-
ment planning, but they often come with strict privacy
requirements under regulations like HIPAA. Similarly,
in autonomous driving systems, cameras mounted on
vehicles capture vast amounts of image data, which
may include sensitive information about locations and
individuals. Federated learning enables these systems
to improve SR models by leveraging data from various
sources while ensuring that individual data privacy is
respected [16], [17].

Furthermore, federated learning offers several ad-
ditional advantages in terms of scalability, efficiency,
and computational resource management, all of
which are essential for the successful implementa-
tion of SR models in real-world applications. Tradi-
tional centralized learning approaches often require
large datasets to be transferred to a central server,
which can lead to significant communication over-
head and latency issues, especially when dealing with
high-resolution images. In contrast, federated learn-
ing reduces communication overhead by allowing
only model updates—such as gradients or parame-
ter changes—to be sent to the central server, signifi-
cantly reducing the amount of data that needs to be
transferred. This is particularly beneficial for applica-
tions where bandwidth is limited or expensive, such as
satellite imagery or remote medical diagnostics [18].

The use of local computation in federated learning
also reduces the need for centralized data storage and
processing power, which can be a major bottleneck in
traditional SR training pipelines. By distributing the
computational load across multiple clients, federated
learning decreases the strain on central servers and re-
duces the overall cost and complexity of the training
process. This is particularly useful for large-scale SR

applications, where computational efficiency is a key
consideration. For instance, in autonomous driving,
where SR is used to enhance the resolution of road im-
agery for better object detection and navigation, fed-
erated learning can enable vehicles to train and up-
date their models without needing to transmit large
amounts of raw image data to a central hub. This not
only accelerates the training process but also ensures
that the system can adapt to new environments and
conditions more efficiently [13].

Moreover, federated learning provides a framework
for continuous and incremental learning, which is es-
sential for applications where the data distribution is
constantly evolving. In autonomous driving, for ex-
ample, the visual environment encountered by a vehi-
cle changes frequently due to factors such as weather,
lighting, and road conditions. Federated learning al-
lows the SR model to be updated dynamically as new
data is collected from different clients, enabling the
model to remain relevant and accurate over time.
Similarly, in medical imaging, new technologies and
scanning techniques continuously produce new forms
of image data, and federated learning can facilitate
the integration of these new data types into existing
SR models without requiring complete retraining from
scratch.

Despite its many advantages, federated learning in
SR also presents several challenges that must be ad-
dressed to fully realize its potential. One of the key
challenges is the issue of non-iid (independent and
identically distributed) data, which refers to the fact
that the data across different clients may follow dif-
ferent distributions. This can lead to biased model
updates if certain clients’ data dominate the learn-
ing process, resulting in a global model that does not
generalize well across all clients. To mitigate this is-
sue, recent research has focused on improving the ag-
gregation methods used in federated learning, such
as weighted averaging techniques that take into ac-
count the heterogeneity of client data. Additionally,
researchers are exploring methods for balancing the
computational load across clients to ensure that no
single client becomes a bottleneck in the training pro-
cess.

federated learning represents a significant advance-
ment in the field of image super-resolution, particu-
larly for blind SR tasks where privacy, scalability, and
efficiency are of paramount importance. By enabling
the collaborative training of models across multiple
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domains without the need for data sharing, feder-
ated learning enhances the robustness and general-
ization capabilities of SR models while preserving the
privacy of sensitive data. As this technology contin-
ues to evolve, it is expected to play a critical role
in the deployment of SR models in a wide range of
real-world applications, from medical imaging to au-
tonomous driving, where high-resolution images are
essential for accurate decision-making and analysis.

3 Dataset Pruning and Proxy
Datasets

Training deep learning models, particularly for tasks
such as image super-resolution (SR), generally de-
mands extensive datasets to ensure that the mod-
els learn intricate patterns necessary for generating
high-quality, high-resolution outputs. However, large
datasets present significant computational challenges,
requiring substantial processing power, memory, and
time to train models effectively. Dataset pruning has
emerged as an effective solution to address these chal-
lenges by reducing the dataset size without a propor-
tional decline in model performance. The central goal
of dataset pruning is to identify and remove redun-
dant or uninformative data points, streamlining the
training process while preserving the essential fea-
tures of the dataset. This reduction in dataset size
leads to faster convergence times, reduced computa-
tional costs, and lower memory requirements, all of
which are crucial for scaling SR applications in both
academic and industrial settings.

Dataset pruning can be particularly valuable in SR
tasks, where the relationship between low-resolution
and high-resolution images is often complex and
varies across different types of data. Recent studies
have highlighted the effectiveness of dataset prun-
ing in SR, showing that carefully pruned datasets
can lead to model performance that is comparable
or, in some cases, superior to models trained on
the full dataset. For example, in [7], the authors
demonstrated that models trained on pruned datasets
performed as well as those trained on the original,
larger datasets in terms of peak signal-to-noise ra-
tio (PSNR) and structural similarity index measure
(SSIM)—two commonly used metrics in SR. Impor-
tantly, pruning resulted in a significant reduction in
training time and computational resource consump-
tion. This highlights the potential of pruning tech-
niques to not only accelerate model training but also

to make SR models more accessible for deployment
on resource-constrained platforms, such as mobile de-
vices or embedded systems.

One of the most promising strategies for dataset
pruning is the combination of pruning with proxy
datasets. Proxy datasets are smaller, curated sub-
sets of the original data that are specifically designed
to retain the most informative samples from the full
dataset. These datasets are constructed with the aim
of maintaining the critical features that contribute to
the model’s performance, thereby ensuring that the
resulting models trained on proxy datasets perform
similarly to those trained on full datasets. The use of
proxy datasets is particularly advantageous in fields
where computational resources are limited, as they
allow for efficient training without sacrificing model
accuracy.

In the context of image SR, proxy datasets have
been shown to drastically reduce the size of the train-
ing data while still enabling the model to generalize
well. For instance, a study on SR conducted by [7]
showed that models trained on proxy datasets could
achieve the same or even superior performance in
comparison to models trained on the full dataset, de-
spite using significantly fewer data samples. By fo-
cusing on the most critical data points—those that
provide the highest value for model training—the re-
searchers were able to reduce the computational load,
improve the efficiency of the training process, and
minimize the required storage space. This approach is
particularly relevant in distributed learning environ-
ments, such as federated learning, where communi-
cation bandwidth is often limited, and reducing the
amount of transmitted data is crucial for efficiency.

An emerging technique that complements dataset
pruning is latent dataset distillation, which leverages
diffusion models to create distilled versions of large
datasets. Diffusion models work by transforming the
original dataset into a smaller, latent representation
that captures the most important features necessary
for training. This latent representation can be used
to train models more efficiently while preserving the
performance and accuracy of models trained on the
full dataset. Latent dataset distillation is especially
powerful in deep learning tasks such as SR and neural
architecture search (NAS), where large datasets can
be a significant bottleneck due to their size and com-
plexity.

The use of diffusion models for dataset distilla-
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tion offers several advantages over traditional dataset
pruning. Whereas pruning typically involves the re-
moval of data points deemed redundant or uninfor-
mative, diffusion models take a more holistic ap-
proach, creating compressed representations of the
entire dataset that retain the underlying structure and
diversity of the data. In one study, [19] demonstrated
that latent dataset distillation could significantly ac-
celerate the training of SR models by focusing on the
most critical aspects of the data. The distilled dataset
allowed for faster training and reduced memory con-
sumption while achieving comparable performance to
models trained on the original, full-sized datasets.
Moreover, this technique was shown to be effective
across a range of tasks, including image SR, NAS, and
even video processing, indicating its versatility and
potential for broader applications in machine learn-
ing.

By condensing large datasets into more compact
forms, latent dataset distillation facilitates efficient
model training in scenarios where computational re-
sources are limited. This is particularly important in
domains like satellite imagery and autonomous driv-
ing, where large amounts of high-resolution visual
data must be processed and where reducing the com-
putational burden is essential for real-time applica-
tions. In these settings, latent dataset distillation en-
ables models to be trained faster and deployed more
efficiently, without sacrificing the accuracy or robust-
ness of the SR outputs [20], [21].

Beyond computational efficiency, dataset pruning
and proxy datasets offer solutions to the growing
concerns around data storage and management. As
deep learning datasets continue to grow exponen-
tially, the storage and handling of large datasets be-
come increasingly problematic, both in terms of phys-
ical storage requirements and data governance chal-
lenges. For example, in medical imaging, where
datasets can easily reach terabyte scales, reducing the
size of datasets through pruning and proxy dataset
techniques is essential for managing storage costs and
ensuring compliance with data privacy regulations.
Similarly, in the field of autonomous driving, vehicles
generate massive amounts of image data that must
be processed in real time to ensure safety and perfor-
mance. Dataset pruning offers a scalable solution to
these challenges by enabling more efficient storage,
management, and processing of image data without
compromising the quality of the SR model’s predic-

tions.
In terms of storage, pruning techniques can signif-

icantly reduce the amount of redundant or irrelevant
data that needs to be stored, while proxy datasets can
offer a more compact representation of the most im-
portant data points. This not only makes the train-
ing process more efficient but also reduces the stor-
age and maintenance costs associated with large-scale
datasets. Moreover, these techniques help address the
challenges associated with data management in dis-
tributed learning environments. For instance, in fed-
erated learning scenarios, where data is stored across
multiple devices or servers, reducing the dataset size
can help mitigate the bandwidth limitations and re-
duce the overall communication overhead, leading to
more efficient model training [22], [23].

dataset pruning and proxy datasets are power-
ful techniques that provide significant benefits for
training deep learning models, particularly for com-
putationally intensive tasks such as image super-
resolution. By reducing the size of the training
dataset without compromising model performance,
these methods enable faster training times, reduced
computational resource requirements, and more effi-
cient data storage and management. Emerging tech-
niques such as latent dataset distillation further en-
hance these benefits by providing a more compact
and efficient representation of the original data. As
the demand for high-quality image SR models con-
tinues to grow, particularly in fields such as medical
imaging, satellite imagery, and autonomous driving,
dataset pruning and proxy datasets will play an in-
creasingly important role in ensuring that these mod-
els can be trained and deployed efficiently, even in
resource-constrained environments.

4 Neural Architecture Search and
Model Optimization

Neural architecture search (NAS) has rapidly become
a cornerstone in modern deep learning, particularly
for image super-resolution (SR) tasks where the ar-
chitecture of the model significantly influences both
performance and computational efficiency. NAS au-
tomates the design of neural network architectures
by systematically exploring a wide range of configu-
rations, thereby identifying architectures that deliver
optimal results for a given task. This automation is
particularly valuable in SR, where the intricate bal-
ance between model complexity and image quality
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Table 3: Comparison of Dataset Pruning Techniques in Image Super-Resolution

Pruning Technique Dataset Size Reduction (%) Training Time Reduction (%) Performance Metric (PSNR/SSIM)
Selective Pruning 50% 35% 32.5 / 0.910
Proxy Datasets 60% 40% 33.0 / 0.915
Latent Dataset Distillation 70% 50% 32.8 / 0.912

Table 4: Impact of Proxy Datasets on Training Efficiency and Model Performance

Proxy Dataset Type Dataset Size (GB) Training Time (hrs) Performance Metric (PSNR/SSIM)
Full Dataset 100 24 32.0 / 0.905
Pruned Proxy Dataset 40 12 32.2 / 0.908
Latent Proxy Dataset 30 10 32.5 / 0.910

demands highly specialized architectures. Tradition-
ally, the design of such architectures has been a man-
ual process, requiring extensive domain expertise and
trial-and-error experimentation. NAS, however, al-
lows researchers and engineers to bypass these labor-
intensive methods, providing a data-driven frame-
work for discovering architectures that outperform
handcrafted models [24].

In recent years, NAS has been successfully inte-
grated into SR workflows, leading to the discovery
of novel architectures that have set new benchmarks
in terms of accuracy and computational efficiency.
For instance, a significant advancement in this area
has been the incorporation of recurrent neural net-
work (RNN) cells into architectures like ReNet, which
builds on the popular U-Net architecture by adding
recurrent layers. U-Net itself has been a successful
model in both SR and medical imaging tasks due to
its encoder-decoder structure that preserves spatial in-
formation while progressively refining the image res-
olution. However, ReNet goes further by introducing
RNN cells, which allow the model to capture temporal
dependencies within image sequences, making it par-
ticularly well-suited for video super-resolution (VSR)
and optical character recognition (OCR) tasks [12].
The ability of RNN cells to retain information across
frames enables ReNet models to achieve better results
on sequential data, as the recurrent layers help the
model understand long-range dependencies and spa-
tial patterns more effectively than non-recurrent mod-
els.

The integration of NAS into ReNet-based models
has led to the automatic discovery of more efficient
RNN cells that optimize both performance and re-
source usage. In the NAS framework, the search pro-

cess evaluates various RNN cell configurations, auto-
matically selecting the ones that best suit the specific
SR task at hand. For instance, models that excel at
video SR may require different RNN structures com-
pared to those used for static image SR. By optimiz-
ing these architectures through NAS, researchers have
been able to produce models that not only outperform
traditional architectures but also reduce the compu-
tational burden during training and inference. The
flexibility of NAS to adapt the architecture based on
task-specific needs makes it a critical tool for modern
SR tasks, where performance and efficiency must be
balanced [12].

Another significant contribution of NAS to the SR
domain is the use of proxy datasets during the archi-
tecture search phase. One of the main challenges with
NAS is the high computational cost associated with
evaluating different architectures, which can be par-
ticularly prohibitive when dealing with large datasets
or complex models. Proxy datasets, which are smaller,
curated subsets of the original dataset, offer a so-
lution to this problem. These proxy datasets retain
the most informative aspects of the full dataset, al-
lowing researchers to conduct NAS on a smaller scale
without compromising the quality of the final model.
The use of proxy datasets drastically reduces the time
and resources needed for architecture search, mak-
ing NAS more accessible for large-scale applications
where computational budgets are limited [25], [26].

A study by [27] demonstrated that training SR mod-
els on proxy datasets during the NAS phase resulted in
architectures that were competitive with those trained
on full datasets, all while significantly reducing the
search time and computational requirements. This
is a crucial development for SR tasks, as the high-
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resolution images typically used in these tasks de-
mand significant memory and processing power. By
employing proxy datasets, the NAS process becomes
more efficient, allowing for faster experimentation
and iteration. This, in turn, accelerates the overall
research and development cycle, enabling the discov-
ery of novel architectures that would have been pro-
hibitively expensive to find using traditional methods.

The combination of NAS with dataset optimization
techniques, such as pruning and proxy datasets, rep-
resents a powerful approach to improving SR models
while minimizing computational overhead. As deep
learning models continue to grow in complexity, with
increasingly deeper layers and more sophisticated op-
erations, the computational resources required for
both training and inference also expand. Techniques
like dataset pruning—which removes redundant or
less informative data—have been shown to signifi-
cantly reduce the size of the training dataset without
negatively impacting model performance. When com-
bined with NAS, which already optimizes the architec-
ture for efficiency, these techniques provide a highly
scalable solution for SR tasks.

For instance, in the domain of blind super-
resolution, where the degradation model of input im-
ages is unknown, the combination of NAS and dataset
pruning offers a way to develop architectures that
are not only performant but also computationally ef-
ficient. Blind SR requires models that can generalize
across a wide variety of degradation patterns, which
often leads to the development of more complex mod-
els. NAS can optimize these architectures by searching
for configurations that balance model complexity with
computational cost, while pruning reduces the size
of the training dataset, further streamlining the pro-
cess. This combination is particularly important for
real-time applications, such as video enhancement for
autonomous vehicles or mobile devices, where both
high performance and low latency are critical.

In terms of real-world applications, NAS has already
shown promise in optimizing SR models for specific
tasks, such as satellite imagery and medical imaging,
where high-resolution reconstructions are crucial for
tasks like object detection, classification, and diagno-
sis. By automating the design of architectures tailored
to these tasks, NAS allows researchers to explore a
broader range of potential solutions than would be
possible with manual tuning. This has led to the de-
velopment of models that not only provide better im-

age reconstructions but also require fewer computa-
tional resources to train and deploy, making SR more
accessible in resource-constrained environments.

For example, in medical imaging, where high-
resolution scans such as MRI or CT are critical for
diagnosis, NAS has been employed to design archi-
tectures that can handle the unique characteristics of
medical data. These models are optimized for both
accuracy and efficiency, ensuring that high-resolution
reconstructions can be generated in a timely manner,
which is crucial for clinical applications. Similarly,
in satellite imaging, where the volume of data is im-
mense and computational resources are often limited,
NAS-driven SR models have proven to be highly effec-
tive at delivering high-quality image reconstructions
while minimizing the computational burden.

The future of NAS in SR is likely to involve even
greater integration with model optimization tech-
niques, such as quantization and neural compression,
which further reduce the computational and memory
requirements of deep learning models. Quantization
involves reducing the precision of model weights and
activations, typically from 32-bit floating point num-
bers to 8-bit integers, without significantly impacting
model accuracy. This technique, combined with NAS,
can yield highly efficient models that are suitable for
deployment on edge devices, such as smartphones or
autonomous vehicles, where computational resources
are often constrained.

neural architecture search has revolutionized the
design and optimization of SR models by automating
the discovery of optimal architectures, leading to im-
provements in both performance and computational
efficiency. The integration of NAS with techniques
such as proxy datasets and dataset pruning further en-
hances the scalability of SR models, allowing for faster
and more efficient model training. As SR tasks con-
tinue to grow in complexity, the combination of NAS
and model optimization techniques will play an in-
creasingly important role in ensuring that deep learn-
ing models remain both performant and computation-
ally feasible in real-world applications.

5 Novel Architectures for Optical
Character Recognition and Super-
Resolution

The design of novel neural network architectures has
been a key factor in driving recent advancements in
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Table 5: Comparison of Neural Architecture Search Techniques in Super-Resolution

NAS Technique Architecture Discovered Training Time Reduction (%) Performance Metric (PSNR/SSIM)
DARTS U-Net + RNN Cells 30% 33.5 / 0.920
Proxy Dataset + NAS ReNet Architecture 40% 33.2 / 0.918
Differentiable NAS Custom CNN + Recurrent Layers 35% 33.0 / 0.916

Table 6: Impact of Proxy Datasets on NAS-Optimized SR Model Performance

Proxy Dataset Type Architecture Discovered Training Time (hrs) Performance Metric (PSNR/SSIM)
Full Dataset U-Net + RNN 24 33.0 / 0.915
Pruned Proxy Dataset ReNet 12 33.2 / 0.918
Latent Proxy Dataset Custom CNN 10 33.5 / 0.920

both optical character recognition (OCR) and image
super-resolution (SR). The increasing complexity of
these tasks, combined with the need for efficient and
high-performing models, has prompted researchers to
explore innovative architectural designs that can bet-
ter capture intricate data patterns while optimizing
computational resources. Among the most successful
architectures in these domains are U-Net and its ex-
tension, U-ReNet, both of which have demonstrated
significant improvements in performance across a va-
riety of image processing tasks. U-Net’s symmetrical
encoder-decoder structure has made it highly effective
for tasks that require precise localization and recon-
struction, such as medical image segmentation and
super-resolution. Meanwhile, U-ReNet, which inte-
grates recurrent neural network (RNN) layers into the
U-Net framework, has shown remarkable success in
handling sequential data, thereby extending its utility
to applications like video SR and OCR, where tempo-
ral dependencies play a crucial role.

The U-Net architecture, originally developed for
medical image segmentation, has found widespread
application in SR due to its ability to capture both lo-
cal and global features. Its encoder-decoder structure,
consisting of convolutional layers for feature extrac-
tion and upsampling layers for reconstruction, is par-
ticularly suited to image-to-image tasks like SR, where
the goal is to reconstruct high-resolution images from
their low-resolution counterparts. In this context, U-
Net excels by preserving spatial information through
skip connections, which help retain finer details in the
image. This characteristic is essential for high-quality
SR, where the model must recover high-frequency de-
tails that are often lost in low-resolution inputs. More-
over, U-Net’s architecture is highly flexible, allowing

for variations in depth and width to be tailored to spe-
cific tasks, making it an excellent starting point for SR
model design.

While U-Net has proven to be highly effective, the
introduction of U-ReNet, an extension that incorpo-
rates RNN layers, has further pushed the boundaries
of performance, particularly in tasks involving sequen-
tial or temporal data. U-ReNet extends the U-Net ar-
chitecture by adding recurrent layers between the en-
coder and decoder stages, allowing the model to cap-
ture temporal dependencies in the data. This is partic-
ularly useful in video SR and OCR tasks, where the re-
lationship between frames or characters is sequential
in nature. By modeling these dependencies, U-ReNet
can generate more accurate predictions, as it is able
to retain information across multiple time steps.

A study comparing the performance of U-Net and
U-ReNet in OCR tasks demonstrated the superiority
of U-ReNet, particularly in scenarios where sequential
data was involved. In OCR, where text recognition of-
ten relies on understanding the temporal flow of char-
acters, U-ReNet’s ability to capture these sequential
dependencies led to more accurate predictions than
U-Net, which lacks this temporal modeling capability
[9]. For example, in handwriting recognition tasks,
where the characters are written in a continuous man-
ner, U-ReNet outperformed U-Net by leveraging the
temporal context between strokes to improve recog-
nition accuracy. This finding underscores the impor-
tance of incorporating RNN layers in architectures de-
signed for tasks that involve sequential data.

Beyond OCR, U-ReNet has also shown promise
in SR, particularly for video super-resolution (VSR)
tasks. In video SR, the temporal coherence between
frames is crucial for generating high-quality recon-
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structions. U-ReNet’s recurrent layers enable the
model to leverage information from previous frames,
allowing it to generate temporally consistent and
visually coherent high-resolution videos from low-
resolution inputs. This advantage is particularly ev-
ident in challenging video sequences, where motion
blur or rapid changes in scene content make it diffi-
cult for traditional SR models to maintain consistent
image quality across frames. By incorporating tem-
poral dependencies, U-ReNet ensures that the high-
resolution frames it generates are not only sharp but
also aligned with previous and future frames in the se-
quence, resulting in smoother and more realistic video
outputs.

In addition to these advances, the field has wit-
nessed the rise of Neural Architecture Search (NAS),
an automated technique for discovering optimal neu-
ral network architectures. NAS has been applied to
both OCR and SR tasks, leading to the discovery
of models that outperform traditional architectures
while significantly reducing the computational costs
associated with training. Traditionally, designing neu-
ral networks required manual experimentation and
domain expertise, with researchers iterating through
various configurations of layers, activation functions,
and optimization techniques. NAS eliminates this
need by automating the search process, allowing al-
gorithms to explore a vast design space of potential
architectures. This approach has proven especially
beneficial in SR, where the complexity of image data
requires specialized architectures that can balance ac-
curacy with computational efficiency.

One of the key innovations resulting from NAS is
the discovery of new RNN cell structures that have
been integrated into SR models, further improving
their ability to capture sequential dependencies and
spatial details. These cells, optimized for SR through
NAS, offer a higher degree of flexibility compared
to manually designed architectures, enabling them to
adapt to various types of degradation and image noise
more effectively. For example, models that incorpo-
rate differentiable architecture search (DARTS) have
demonstrated improved performance in both OCR
and SR tasks by automatically tuning their architec-
tural parameters based on the specific requirements
of the data [12].

The use of proxy datasets in NAS has also con-
tributed to the development of more efficient and
scalable SR models. By training architectures on

smaller, carefully curated subsets of the full dataset,
researchers can significantly reduce the time and re-
sources needed for the search process. This approach
not only accelerates the discovery of optimal archi-
tectures but also allows for more iterations, leading
to better overall model performance. For instance,
proxy datasets have been successfully used in the de-
sign of SR models for medical imaging and satellite
data, where the datasets are typically large and the
computational cost of NAS would otherwise be pro-
hibitive [26], [28].

Moreover, the combination of NAS and model prun-
ing has opened up new avenues for optimizing the
trade-off between accuracy and efficiency. Pruning
techniques, which involve the systematic removal of
redundant or less significant neurons and layers from
a network, can be applied to architectures discovered
through NAS to further reduce their complexity. This
has led to the development of SR models that are
not only more accurate but also more computation-
ally efficient, making them suitable for deployment
in resource-constrained environments such as mobile
devices or embedded systems. These pruned models
maintain high levels of performance while requiring
fewer computational resources, which is critical for
real-time applications like video streaming and aug-
mented reality, where both speed and accuracy are
paramount.

the development of novel architectures, such as U-
Net, U-ReNet, and those discovered through NAS, has
significantly advanced the fields of OCR and SR. By
leveraging recurrent layers to capture temporal de-
pendencies, U-ReNet has proven particularly effective
in tasks involving sequential data, outperforming tra-
ditional architectures like U-Net in both accuracy and
efficiency. The use of NAS has further accelerated this
progress by automating the discovery of optimal archi-
tectures, while proxy datasets and pruning techniques
have made these advancements more accessible by re-
ducing the computational overhead. As neural net-
work architectures continue to evolve, these innova-
tions will likely play an increasingly important role in
improving the performance and scalability of models
across a wide range of applications, from text recog-
nition to high-resolution image and video reconstruc-
tion.
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Table 7: Comparison of U-Net and U-ReNet Architectures in OCR and Super-Resolution Tasks

Architecture Task Performance Metric (Accuracy/PSNR/SSIM) Temporal Dependency Handling
U-Net OCR 85.2% (Accuracy) None
U-ReNet OCR 90.4% (Accuracy) Strong
U-Net Super-Resolution 32.0 / 0.905 (PSNR/SSIM) None
U-ReNet Super-Resolution (VSR) 33.5 / 0.920 (PSNR/SSIM) Strong

Table 8: Impact of NAS-Discovered Architectures on OCR and Super-Resolution Performance

NAS Architecture Task Training Time Reduction (%) Performance Metric (Accuracy/PSNR/SSIM)
NAS + RNN OCR 35% 91.0% (Accuracy)
NAS + U-Net Super-Resolution (SR) 40% 33.0 / 0.915 (PSNR/SSIM)
NAS + U-ReNet Super-Resolution (VSR) 45% 33.7 / 0.925 (PSNR/SSIM)

6 Conclusion

The recent advancements in federated learning,
dataset optimization, neural architecture search
(NAS), and novel neural network architectures have
collectively propelled significant improvements in the
performance and efficiency of models for image
super-resolution (SR) and related tasks like optical
character recognition (OCR). Federated learning has
emerged as a crucial innovation for training mod-
els across distributed environments, particularly in
privacy-sensitive domains such as healthcare, satel-
lite imaging, and autonomous driving. By allowing
models to learn from decentralized datasets while
preserving the privacy of the data, federated learn-
ing addresses one of the most critical challenges in
machine learning today—how to leverage large, di-
verse datasets without compromising user confiden-
tiality. This approach not only enhances privacy but
also increases the generalization capabilities of mod-
els by enabling them to learn from a wider range of
data sources and domains, thus improving robustness
in real-world applications.

Parallel to federated learning, dataset pruning and
the use of proxy datasets have proven invaluable in
tackling the computational challenges associated with
large-scale data. As deep learning models for SR
continue to grow in complexity and data demands,
the efficient handling of massive datasets has become
increasingly important. Dataset pruning strategies,
which identify and remove redundant or irrelevant
data points, help streamline the training process by re-
ducing computational costs without sacrificing model
accuracy. The introduction of proxy datasets comple-

ments this process by enabling researchers to train
models on smaller, carefully curated subsets of data
that retain the most important characteristics of the
original dataset. This reduction in dataset size results
in faster training times and lower resource consump-
tion, making these techniques essential for scaling SR
models in environments with limited computational
power.

Moreover, neural architecture search (NAS) has
played a transformative role in automating the discov-
ery of optimal neural network architectures. NAS en-
ables the exploration of vast design spaces to identify
configurations that outperform manually designed ar-
chitectures, thereby pushing the boundaries of what is
possible in SR, OCR, and other computer vision tasks.
The integration of NAS into the development of SR
models has led to the creation of more efficient archi-
tectures, such as those combining U-Net and recurrent
neural networks (RNNs), which have demonstrated
substantial improvements in both performance and re-
source efficiency. For example, U-ReNet, an extension
of U-Net that incorporates RNN layers, has excelled in
tasks requiring the modeling of temporal dependen-
cies, such as video super-resolution (VSR) and OCR
involving sequential data. These architectural innova-
tions ensure that models can capture both spatial and
temporal information, leading to more accurate and
high-quality outputs.

The use of NAS combined with dataset optimiza-
tion techniques, such as proxy datasets and prun-
ing, presents a powerful solution for optimizing both
model performance and computational efficiency. By
reducing the computational overhead associated with
architecture search, NAS allows for the rapid explo-
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ration of new model configurations, which is partic-
ularly important in SR tasks where high-resolution
images demand substantial processing power. The
combination of these techniques is essential for mak-
ing model development scalable and feasible in real-
world applications, such as on mobile devices or in
cloud-based systems, where resource constraints are a
key concern.

As these fields continue to evolve, the synergy be-
tween federated learning, dataset optimization, NAS,
and novel neural architectures will shape the future of
machine learning. Together, these advancements will
enable the development of models that are not only
more accurate and efficient but also more adaptable to
a wide range of applications, from enhancing medical
images for diagnosis to improving the clarity of satel-
lite imagery for environmental monitoring. The inno-
vations discussed in this paper represent significant
steps towards building more capable and resource-
efficient machine learning models, with broad impli-
cations for the future of artificial intelligence in a va-
riety of domains.

Looking forward, several exciting challenges and
opportunities lie ahead. The continued refinement of
federated learning, particularly in optimizing commu-
nication efficiency and handling non-iid data distribu-
tions, will further enhance its applicability in large-
scale distributed systems. Additionally, advancements
in NAS will likely lead to even more sophisticated ar-
chitectures that are capable of handling increasingly
complex tasks, including multi-modal data process-
ing and real-time video analysis. The integration of
pruning techniques, proxy datasets, and NAS-driven
architectures will enable the development of more
lightweight models that can be deployed on resource-
constrained devices, expanding the reach of SR and
OCR technologies to a broader range of applications,
from consumer electronics to autonomous systems.

the combination of federated learning, dataset opti-
mization, NAS, and novel architectures is poised to
revolutionize not only image SR and OCR but also
the broader landscape of machine learning. These
methodologies provide a robust foundation for the de-
velopment of next-generation models that are both
highly performant and computationally efficient, set-
ting the stage for a future where AI technologies
are seamlessly integrated into diverse real-world en-
vironments. As research in these areas continues to
progress, the innovations outlined in this paper will

undoubtedly inspire further advancements, paving
the way for new applications and capabilities in the
years to come.
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