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Abstract 

The global paradigm shift toward energy efficiency and sustainable living necessitates innovative 

approaches to energy management, particularly within residential buildings which contribute 

substantially to overall energy consumption. This study unveils a cutting-edge methodology 

employing deep learning models to predict residential energy demand with remarkable accuracy. 

Through the application of advanced architectures such as Recurrent Neural Networks and Long 

Short-Term Memory networks, the research harnesses the power of extensive datasets, extracting 

patterns pivotal for energy forecasting. The process entails meticulous data preparation, involving 

cleaning, feature engineering, and normalization, thus creating a robust model that accurately 

captures the intricate dynamics of energy use. The effectiveness of the deep learning approach is 

evidenced by its substantial performance metrics. It exhibits the potential to aid homeowners and 

policy makers in making informed decisions that lead to energy conservation and cost savings. 

While the findings are promising, the study acknowledges ongoing challenges and sets a future 

research agenda that includes scaling models to larger datasets, integrating renewable energy 

forecasting, and addressing data privacy concerns, ultimately advancing smart and sustainable 

energy systems. 

Introduction 

In recent years, the quest for energy-saving and making human industrial activity more sustainable 

was put at the forefront of global efforts to overcome climate change and minimize energy 

consumption. Although significant progress was made over this time, it was pointed out that 

residential buildings consume a substantial part of all energy consumed on a global scale, drive 

significant demand for energy-efficient solutions of the future [1]. Thus, understanding and 

predicting energy consumption in this type of facility was emphasized as an essential step toward 

the goal formulated in the name of the research. This study presents a new approach to energy 

demand in residential buildings forecasting. This work’s choice is based on the unique capabilities 

of deep learning, which has demonstrated a high-efficiency level in solving the problem formulated 

in the article. Being a subset of machine learning, deep learning has proved to be an excellent tool 

to work with large amounts of often multi-faceted data and extract from them hidden, often 

complex, and interrelated phenomena and patterns [2]. 

Researching some of the deep learning methods for energy demand forecasting in residential 

buildings presents numerous methods that are used to optimize energy efficiency and forecast 

accuracy. Deep learning models are important in building energy management as they have better 

features of extraction and data modeling compared to traditional statistical features. In this case, 

some literature indicates that when used on restricted Boltzmann machines, they tend to perform 

better in terms of data structuring and transforming [3]. In a similar approach, the models are used 

in renewable energy power system management, where the deep learning methods have been used 

to enhance precision in making predictions using model data features and structures. Additionally, 

deep learning has been used in predicting power consumption in residential and commercial 

buildings against traditional models and AI methods, where they proved to have better results. 

Specifically, they play a role in probabilistic and multivariate forecasting in the electricity market, 

although there is a challenge with the sensitivity to the model’s parameters and computation. Thus, 

different machine learning models join to form a hybrid model, which increases the report of high 

temperatures between the heating and cooling demands on buildings, hence, making better 

decisions [4-7]. 

In addition, they perform better in solar energy as deep learning beats the traditional methods in 

forecasting solar irradiance and photovoltaic power. In this case, the need to forecast the solar 

power is important to manage the system as it suffers from varying efficiency hinging on location, 
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time, weather, and system design [8]. As a result, the literature review adheres to the use of deep 

learning in forecasting energy demands. This part shows that such forecasts work better compared 

to other methods, with new research pointing to the need to predict the models’ optimal 

development and readout data, making energy affordable and available using renewable sources 

such as solar. 

Ghalehkhondabi et al. provide a review of energy demand forecasting from 2005 to 2015. The study 

focuses on the transition from traditional econometric and time series models to soft computing 

methods, such as neural networks and fuzzy logic. It concludes that the major advantage of the 

neural networks is the ability to embrace complex and nonlinear consumption patterns. However, 

it requires more time for computational purposes. Moreover, hybrid models are viewed as a 

promising research direction. Hong et al. conduct a review of energy forecasting and note that pre-

requisites for high quality are reproducible publication in peer-reviewed journals and utilization of 

open data. I find it important that understanding of relevant and upcoming issues is considered to 

be a part of a review [9]. As for electricity demand forecasting, I consider it essential that data is 

one of the most useful tools in this regard, especially in cases where the data covers the entire 

population, such as resulting electricity bills in households. Fazeli et al. analyze models that focus 

on the influence of climate on residential energy demand. The study shows that the determinant of 

energy demand is still not well-understood and is mostly focused on nests of end-uses. At the same 

time, with an improved understanding of how the energy demand is altered depending on 

temperature, it can yield more insightful results in climate change adaptation. Bajaj reviews 

methodologies of electricity demand forecasting over the long term, particularly for the next ten 

years. The information is general and not always relevant [10]. Moreover, the applicability of the 

reviewed forecasting for long-term generation expansion planning is revealed. The planning should 

be concerned with the reliability of the forecast and consider previous attempts at forecasting 

electricity demand. Verdejo et al. review statistical linear parametric methods to forecast residential 

electricity demand, which are then analyzed in the context of Chile’s data from the CIty-zen project. 

The study concludes that the forecasted demand is rather accurate and is essential for operational 

tasks and power distribution system design. Mir et al. conduct a review of electricity demand 

forecasting in low and middle-income countries, which has found that use of both electrical 

appliances and heating in the households does not have a significant impact on electricity 

consumption. The study has shown that electricity demand determinants are much different in 

developing countries, and horizons are current demand and demand in the next months. Time series 

modeling is the most common for long-term and medium-term forecasting, while artificial 

intelligence is used for a short period of time. Barbato and Capone surveyed residential consumer 

demand-side management optimization methods. The study shows how electricity resource 

management becomes a tool to ensure the stability and efficient performance of the electric system. 

The main goal of the research is to be developing a predictive model capable of effectively 

forecasting the energy demand for residential buildings. By utilizing deep learning architectures, 

such as Recurrent Neural Networks and Long Short-Term Memory networks, the study will attempt 

to account for temporal sequences of and variabilities in residential energy-related data [11]. The 

models will be developed and tested on a rich dataset depicting hourly-based energy consumption 

metrics, environmental conditions, and occupancy rates of a 5-story residential building 

accommodating around 20 of such units. The data will be meticulously prepared by performing 

several pre-processing techniques, such as data cleaning, feature engineering, and normalization, 

enabling its readiness for training the models. Thus, the research will focus on analyzing the 

residential energy consumption data to establish a detailed residential building load profile, 

preparing the data by collecting, cleaning and transforming, and training deep learning models to 

ensure high-fidelity energy demand forecasting. The findings of the research are expected to bring 

considerable value to energy management and sustainable housing, as it will provide useful insights 

for the homeowners and other stakeholders, enabling effective energy distribution planning and 

implementation of energy-saving measures. 
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Studied Residential energy consumption data 

Today, in an age where enegry efficiency is so important and energetically sustainability has 

become as well known as it could ever be, understanding what determines consumption at home is 

one of the most important things that humans face as they usher in a new era. This study aims to 

explore the various aspects of energy consumption in a family, to shed light on its multi-layered 

relationships and interconnections among different elements influencing patterns. By sifting 

through the power consumption data of private households, this research tries to discern what 

exactly constitutes energy use. What are the ingredients for demand? Finally it seeks to break down 

the yearly or seasonal time scale of energy consumption so that every householder's particular 

situation--whether at an aggregate level which mirrors society's or on an individual basis 

determined by him- her themselves--can be understood more clearly [12]. The analysis by is based 

upon a simplified load profile of a family home, and acts as an instance where broader energy use 

trends can be understood. Not only does this profile uncover the energy demands of common 

household appliances, it also gives insights into peak load characteristics and the differing nature 

of usage according to seasons. By carrying out such a detailed analysis, it helps to show clearly just 

how much more energy is consumed during the summer months by households in comparison with 

winter. This in turn draws attention to external conditions as being responsible for these differences 

in energy use. 

The residential energy load profile in Table 1 above represents an integrated form of the energy 

consumption habits inside a 5-story residential building, with around 20 residential units. This 

profile utilizes data from various electrical appliances and systems within these units at hourly 

intervals to calculate the consumption patterns. Our current purpose is to understand the collective 

shape of energy use and to detect peak load periods, because these are important in the organization 

of supply as well as for energy saving design requirements [13]. 

Table 1. Simplified load Profile of the residential building 

 
 

  Simplified 

 

Rating 
(W) 

Quantit
y 

Peak 
Load 
(kW) 

No. of 
Hours of 
use per 

day 
(summer

) 

Consumptio
n per day 

(kWh) 

No. of 
Hours 
of use 

per day 
(Winter

) 

Consumptio
n per day 

(kWh) 

Tube light 40 120 4.8 12 57.6 12 57.6 

Incandescent bulb 60 20 1.2 5 6 5 6 

Mercury light 400 4 1.6 10 16 12 19.2 

Water pump 1500 2 3 6 18 5 15 

Ceiling fan 65 80 5.2 16 83.2 0 0 

Energy light 23 50 1.15 15 17.25 15 17.25 

Fridge 500 17 8.5 3 25.5 3 25.5 

Television 300 12 3.6 3 10.8 3 10.8 

AC 1.5 ton 1500 1 1.5 5 7.5 0 0 

Total 75 306 30.55 75 241.85 55 151.35 
 

A. Constructing the Load Profile 

Combining the power consumption data for all households can yield a highly detailed load profile. 

Through the following processes: 

Identifying Major Appliances and Equipment, this profile comprises various household appliances 

and instruments - such as fluorescent lights tube (gutdanbulwoyong), incandescent lamps 

(dawnbulbs), mercury lamps or flashlights (dang), water pumps (all sizes), central heating systems 

and energy-saving bulbs (also called underfloor lamps), refrigerators(fridge), television sets and air 

conditioners(A-C 1.5 h.p). 
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Energy owering Rating and Number of Units: For each appliance, the power rated in watts and the 

number of such appliances in use throughout the building are recorded. This data serves as basis to 

estimate the total likely loads which can be imposed upon building electric system by every 

appliance type. 

Peak Power Calculation: The peak load (in kW) of each appliance type is calculated multiplying 

power ratings by amounts and converting from Watts into kilowatts. This figure shows how much 

of a strain that particular appliance type might present if all units were in operation simultaneously. 

Analysis of Hourly Consumption: The operating hours per day for each appliance according to 

season are determined based on typical use. This time data combined with power rating and number 

of units helps to compile for every appliance type both seasons taken together daily energy 

consumption (in kWh).The daily energy consumption for each appliance type, 
dailyC , is calculated 

using the formula: 

 ( ( ) . ) /1000dailyC Rating W Quantity No of Hoursof use perday=    (1)   

This formula converts the power rating from Watts to kilowatts and multiplies it by the daily 

operational hours, providing the daily consumption in kilowatt-hours (kWh). For the total daily 

consumption across all appliances, totalC , the formula aggregates the consumption of all individual 

appliance types: 

 
,

1

n

total daily i

i

C C
=

=  (2)   

where n is the number of appliance types considered in the study. To capture the load profile at an 

hourly interval, the peak load for each hour, 
,peak hourL , is inferred from the operational patterns and 

the calculated peak load for each appliance type. Given the variability in appliance use throughout 

the day, the hourly load profile, 
hourlyL , would require detailed temporal data on appliance use, 

which can be synthesized based on typical residential routines and seasonal variations. 

B. Insights from the Load Profile 

The analysis of the simplified load profile reveals several key insights: 

• Seasonal Variability: There's a marked difference in energy consumption between summer 

and winter, primarily due to the use of air conditioning in the summer and the cessation of 

certain appliances like ceiling fans and AC units in the winter. 

• Peak Load Implications: Understanding the peak load is essential for energy planning, 

especially in identifying the need for capacity adjustments or energy-saving interventions 

during high-demand periods. 

• Appliance-Specific Consumption Patterns: The data underscores the significant variance 

in energy consumption across different appliance types, highlighting areas where energy 

efficiency improvements could yield substantial savings. 
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Figure 1. Hourly Energy Consumption. The solid line represents the energy consumed 

each hour over a single day providing a view of daily energy usage patterns. 

A line chart showing the use of energy by a residential building in 24 successive hours against its 

mean consumption. The x-axis represents the time indexed as hours of day, from 0 to 24. The y-

axis represents energy consumption measured in kilowatts (kW). In addition, a detailed comparison 

of daily as well as hourly average energy consumption The graph presents two courses of action: 

the actual consumption of energy at certain times (solid blue line) and over a longer period an 

average hourly usage (dotted red line). This comparative analysis of time means in energy usage 

clearly shows when peak consumption times occur and how they differ from the average. The 

diagram also tells us which hours of the day are wasted or overused [23].Visualizing Energy Holes 

and Abuse Strategic management for minimizing energy costs relies on being able to determine 

precisely which periods during the day show low efficiency. This graphical representation provides 

a broad overview; you may also draw on your own experience to further simplify things firsthand. 

 
Figure 2. Weekly Energy Consumption Patterns in a Residential Building. This radar chart 

depicts the variation in hourly energy usage, measured in kilowatts (kW), across different days 

of the week. The active energy load in different time of the day is represented by the circles. 

The analysis presented in the previous sections further extends to weekly energy consumption 

patterns, illustrated in a radar chart in Figure 2. This type of visualization captures the variation in 

hourly energy consumption throughout the week. Each day of the week is represented in distinct 

colors and illustrated as a separate line on the chart. The pattern of the day can, therefore, be easily 

identified, most notably in the peak load times [14]. Days are also marked on the outside of the 

graph to show over a single day period measured on the inside. Through the radar chart, moreover, 

the visual representation of increased or decreased energy consumption over a week is noticeable, 

especially in sectors with a concentration of many spikes. For instance, the consumption between 

0 and 6 hours over a weekend indicates the appliances that power off or switch on by daylight. 

Overall, the radar chart can be used to understand daily and hourly energy consumption levels to 

enhance load distribution and reduce wastage. The hourly energy consumption pattern is presented 

in Figure 3 through a heat map. Different shades of color are used to indicate the energy of use over 
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an hour, with darker color intensity indicating heavier use. Columns represent the days of the week, 

starting from Saturday up to Friday, and rows depict the time during the day. From the graph, it is 

possible to identify the different hotspots that show the various times of heavy and light energy 

consumption. The heat map is a useful tool for diagnosing and addressing energy use wastages and 

inefficiencies. 

 
Figure 3. Weekly Heatmap of Hourly Energy Consumption in kWh. The color gradient 

represents the energy consumed each hour throughout a week, with darker shades 
indicating higher consumption. Each column corresponds to a day of the week, from 

Saturday to Friday, and each row represents an hour of the day, from 1 to 24. 

Data preparation and training 

The first step in the data preparation process is the detailed collection of all necessary data. 

Practically, this means the gathering of readings on hourly energy use for different appliances in 

the building of residential type. These data must be reliable and would encompass energy use 

relating to all devices. The compilation should also be extended to include all relevant 

environmental data, including temperature and humidity that could affect energy consumption. 

Finally, the required occupation patterns that would influence energy use must also be collected. It 

is critical to acquire all the necessary data types as their application has established their significant 

effect on the changes in energy requirements. As for environmental and occupation data, the 

collection would offer a broad perspective on the factors that influence the amount of energy used. 

The succeeding stage in the initial step of the data preparation process is the necessity for its 

cleansing and preprocessing. Collecting data involves the verification and estimation of its 

accuracy, which includes rectifying issues that may compromise the overall integrity and efficacy 

of predicting values through a model. The cleansing process in data collection is employed to rectify 

missing values by applying statistical imputation techniques and to detect whether any outliers are 

present in the variables. When found, the anomalies should be corrected or the whole variable 

containing the outlier should be removed. The main aim of the data cleansing and preprocessing 

stage is to ensure that the initial dataset is reliable and clean and can be used to effectively train the 

deep learning model. The mechanism of feature engineering would be employed, enabling the 

transformation of raw material data into a structure containing features that would allow the model 

to train efficiently. Its creation would include variables that are new and generated from the existing 

data as well as a rigorous selection of features relevant for training [15]. The linear elements of data 

in timestamp attributes carrying cyclical patterns of energy use would be built based on temporal 

data. All accepted environment and occupation data would also be incorporated as features. 

Besides, features such as the aggregated use of energy within the building based on the simplified 

load profile of all appliances and its variability with varying conditions would be formed. Finally, 

data transformation and normalization would be performed in the last preparation stage. It would 

include the transformation of all data types as well as scaling features uniformly based on the 

model’s training process. Practically, it would mean normalizing features to have the mean of 0 and 
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standard deviation of 1. Scaling can also be performed to contain values in the interval [0, 1]. Such 

a process is vital for the model’s convergence and efficiency. In parallel, the time-series data would 

be structured to form a sequence. Such a procedure would allow the subsequent employment of 

models for processes with RNNs or LSTMs. Upon the conclusion of the process, the prepared 

dataset would be split into training and validation datasets as well as a test set. A complete set of 

all-important data after the final preparation will be of utmost importance for evaluating the final 

model’s abilities and the test of its predictions against unseen data. 

 
Figure 4. Visual representation of the data preparation workflow for residential energy 

demand forecasting, illustrating the sequential processes of data collection, cleaning, 
preprocessing, feature engineering, and data transformation. This comprehensive 

flowchart delineates the meticulous steps involved in converting raw energy consumption 
and environmental data into a structured and normalized format, ready for input into the 

deep learning model 

The stages of developing a deep learning model for forecasting the residential energy demand also 

include the model training phase. The latter is concerned with selecting an appropriate deep 

learning architecture, implementing the training procedures, as well as optimizing the model 

parameters iteratively to enhance their predictive accuracy. Model training is carefully designed so 

that the resulting predictor would be able to grasp the patterns and relationships that exist in the 

residential energy consumption dataset. The deep learning architecture is determined by the type 

of dataset and the specifics of forecasting [15-17]. Since energy demand forecasting is a time series 

prediction task, Recurrent Neural Networks and Long Short-Term Memory networks are used. 

These models are suitable for analyzing time series data, as they can also capture the temporal 

dependencies between various time points. Therefore, deep learning models that are used in this 

project learn to predict future household energy demand on the basis of the data about the energy 

consumption of the past. They can also use current external variables, such as daily or weekly 

cycles, environmental temperatures or other weather-related variables, as well as holidays and 

location factors. The training steps are defined in detail, and the process starts after feeding the 

deep learning model with the preprocessed and structured data. At this point, the model begins the 

learning procedure by updating its internal parameters in a way which minimizes the error in energy 
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consumption prediction. Stochastic Gradient Descent and Adam optimization algorithms help to 

update the weights of the models step by step, thus reducing the value of the loss function. In this 

case, as it has been demonstrated earlier, the loss function value represents the error of prediction 

in respect to the energy consumption values. Training is performed on mini-batches of the original 

dataset to update the weights of the model gradually and, therefore, to save computer memory. An 

additional desire to divide the whole dataset into mini-batches to propagate it through the deep 

learning architecture phase by phase is conditioned by the desire to make the learning process more 

effective [15]. Moreover, different optimization algorithms demand the implementation of this 

approach to save memory. Nevertheless, one of the main advantages of dividing a sample into 

several smaller ones is the possibility to optimize the model parameters iteratively. Meanwhile, the 

next step is closely connected to analyzing the performance of the developed deep learning model. 

It is high time to adjust the values of the hyperparameters such as the number of units, layers, the 

value of the dropout rate or the learning rate. It is done until the highest possible accuracy level is 

reached. Validation data help to determine the performance of the models on the data which are 

previously unknown to the predictor not to influence the chosen test set. The training proceeds until 

the satisfactory value of MAPE is reached. Meanwhile, the problem of overfitting can prevent the 

achievement of floating points, which also demands the implementation of the special method to 

deal with it. Early stopping is one of the usually used solutions, as processes of training and 

validation are stopped when the test error rate does not decrease [3]. Other methods used for this 

purpose are L1 and L2 regularization techniques. 

 Result  

C. Evaluation of Model Predictiveness 

In the realm of residential energy demand forecasting, the application of deep learning models holds 

particular promise due to their capacity to model complex nonlinear relationships and temporal 

sequences. Our study focused on two architectures known for their proficiency in sequence 

prediction tasks: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks. 

To quantify model performance, we relied on the Mean Absolute Error (MAE), a straightforward 

metric that calculates the average magnitude of errors between the predicted and observed values 

without regard to their direction. Mathematically, the MAE is expressed as: 

 
1

1
ˆMAE | |

n

i i

i

y y
n =

= −  (3)   

where iy  represents the actual observed values, ˆ
iy  denotes the predicted values, and n is the total 

number of observations. A lower MAE value is indicative of a model with minimal prediction errors 

and is ideal in a forecasting context.  Another metric, the Root Mean Squared Error (RMSE), 

provides an aggregate measure of model accuracy by squaring the errors before averaging, thereby 

imposing a higher penalty on larger errors and thus potentially highlighting outlier predictions. 

RMSE is calculated as: 
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1

1
ˆRMSE ( )

n

i i

i

y y
n =

= −  (4)   

The Coefficient of Determination, commonly referred to as R², complements these metrics by 

offering a measure of the proportion of the variance for a dependent variable that's explained by an 

independent variable or variables in a regression model. The R² is computed as: 
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where y  is the mean of the observed data. The closer the R² value is to 1, the better the model's 

predictions are at explaining the variance of the actual data. The following mathematical 

formulations stand behind evaluating the predictiveness of our models. By conducting the 

calculations, it can be determined how accurate the forecasts of the models are and whether they 

can be applied in energy management. A model with low MAE and RMSE values and a high R² 

score is more reliable and useful for predictive analysis. As for the confidence or prediction 

intervals built surrounding forecast values, they reveal how reliable the predictions are. More 

specifically, confidence intervals define an interval within which the actual values are likely to lie 

with a given probability. It defines how confident one can be in the model’s predictions. These 

intervals must be built and used in the context of energy management where the impact of 

prediction errors can be rather large. 

 

The Mean Absolute Error is 1.47875. In other words, the difference between the mean predicted 

value and the actual value will be 1.47875, which determines how many units of energy will be on 

average mispredicted. As for the Root Mean Squared Error, it is 1.81227. According to Kellner, this 

is a quadratic scoring rule that also measures the average amount of magnitude of error. This scoring 

rule works for fitting lines to nonlinear measurements and relies on squaring the differences 

between points in the dataset and the fitted line to eliminate the negativity of the estimates. The 

Coefficient of Determination is 0.79781 takes the value between 0 and 1, whereby 0 shows no 

predictiveness. A value of 1 indicates that the regression perfectly fits the data, whereas in this case, 

the model explains 79.781% of the variance. 

D. Analysis of Forecasting Results 

Having analyzed the forecasting results in detail, it can be stated that the models successfully 

predict daily energy consumption with some accuracy. Nevertheless, there are periods when the 

models’ predictions differ from the patterns of actual usage, primarily when the electricity use is 

reaching its peak. It might be an indication that the model could be improved by adding more 

variables that affect the consumption rate, such as the weather or special events. The graph below 

contains the corrected daily energy consumption against the predicted values . The absolute error 

is represented by the amount of light grey area between the lines.  

 
Figure 5. Error Highlight Between Actual and Predicted Daily Energy Consumption 

The solid sky blue line shows the daily energy consumption, while the dotted coral line is used to 

mark the predicted values . The graphs for the previous model were used to create the second figure. 

The level of transparency of the error region does not require further investigation and immediately 

gives an intuitive understanding of the hours when the model prediction has not been exact. The 

prediction error percentage for each considered hour is presented in Figure 6. The green area of the 

bars describes by how many percentage points the predicted values differ from actual energy 

consumption in a certain hour [18]. The bars can be used to determine the time of the day when the 

model can be improved. It shows hours of the day when the error is largest. It is crucial to remember 
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that the moments when the consumption is either higher or lower than usual may show the largest 

mistakes, as the small absolute difference multiplies when turned into the percentage. 

 
Figure 6. Percentage Error in Energy Consumption Predictions by Hour 

The performance metrics demonstrate on an hourly basis how well the models are able to manage 

peak demand forecasts. This is an essential consideration because energy usage in residential 

buildings fluctuates both during winter evenings and also summer days. The analysis also 

emphasizes the importance of the models’ response to seasonal changes, since accurate prediction 

of when energy demand will shift can lead to more efficient energy usage and conservation 

methods. Such insights do not only guide improvements in the predictive models but also suggest 

ways to manage energy consumption right across the residential spectrum. Besides, the relationship 

between data quality and model performance cannot be overstated. The integrity of the input data, 

which is guaranteed through careful preprocessing that includes missing value imputation as well 

as treatment for outliers, establishes a base for the model's predictive accuracy. The solid attention 

given to data quality will be manifest in results of model outputs and is fundamental to effect deep 

learning approaches in forecasting energy demand within residential buildings. 

 

 

 
Figure 7. Comparison of Daily Energy Consumption vs. Predicted Values Across a Week 

Fig. 7 shows the actual energy consumption each day of the week along with the model s predicted 

energy consumption values. Each colored line represents actual consumption of a day, from 

Saturday through Friday, while the dashed line is the model s predictions. A model that fits well 

can be recognized by the close match between the predicted line and daily patterns. However, some 

differences are clearly seen during certain hours of day [19]. This chart provides a clear visual 

check on the model's forecasting accuracy across different days, and its ability to capture energy 

use variability for day-to-day operations. 
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Conclusion 

This study has systematically explored the potential of using deep learning to predict the energy 

demands in residential sector. The methodology centered around Recurrent Neural Networks, RNN 

for short, and Long Short-Term Memory networks Seeks to model complex time-varying sequences 

characteristic of household energy consumption. 

Through data cleansing, feature engineering and normalization, the study designed a forecasting 

model that can reproduce the intricate patterns of energy use. The model's performance indices 

included Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the Coefficient of 

Determination (R²) [20]. The empirical results reflected a low MAE and RMSE on the one hand 

and a high R² on the other, indicating that these models possess strong predictive power, accounting 

for most of the variation seen in actual energy consumption data. In addition, by providing 

confidence intervals around their forecasts, these models have been made more reliable and 

understandable. 

The findings emerging from the forecasting results are manifold. On one hand, the ability of the 

model to forecast periods when peak demand will occur brings significant benefits in energy 

management: it allows load shifting after peak times so that strategic and elegant, grid-based 

stability may be achieved. On the other hand, and somewhat challenging to such an optimistic 

result, outliers were happening all over the place--in other words, there were times when model 

refinement was needed. This could be due to more factors needing inclusion (another case for 

ensemble modeling); it might also require hybrid techniques [21]. 

The findings of the study have more than mere academic relevance. For the average homeowner, 

these models can mean greater control over energy usage and potentially lead to reductions in costs. 

For people like assessment agents and local providers of energy, this study can provide guideposts 

along which to base more specific efficiency measures from energy usage data that is more 

localized in time or place. It may also help guide their planning for sustainable energy systems. No 

journey of perfecting energy demand forecasting can ever realistically be at an end, though the deep 

learning models are doing well [22-24]. Their limitations are clear. For instance, they need high-

quality data to train--something that is often hard to come in practice especially in nearly data-poor 

regions and where the data might not be so good. In addition, while they excel at recognizing 

patterns, their ability to predict outlier events or sudden shifts in energy consumption habits still 

requires further research. Future work might see a move towards the construction of real-time 

adaptive models that take instantaneous data streams as well in order to give more plausible future 

trends and forecasts [25]. 

The research direction of this investigation is clear. Each one of these requires enhanced model 

scalability and integration of data from renewable energy sources into the predictive framework. 

Information security issues are also crucially important [26]. As deep learning models continue to 

mature, they will play an ever-wider role in moving each of these interests forward--able and 

sustainable energy systems on the one hand with the AI-based smart networks whence brighter 

tomorrows are bound to come. 

References 

[1] G. Amjadi, T. Lundgren, and W. Zhou, “A dynamic analysis of industrial energy efficiency 

and the rebound effect: implications for carbon emissions and sustainability,” Energy Effic., 

vol. 15, no. 7, Oct. 2022. 

[2] X. Yang, Towards energy efficiency and environmental sustainability. LAP Lambert Academic 

Publishing, 2009. 

[3] P. Kumar, G. S. Brar, and L. Singh, “Energy efficiency evaluation in commercial and 

residential buildings with demand side management: A review,” 2019 8th International 

Conference on Power Systems: Transition towards Sustainable, Smart and Flexible Grids, 

ICPS 2019, 2019. 

[4] V. Stack and L. L. Narine, “Sustainability at Auburn University: Assessing Rooftop Solar 

Energy Potential for Electricity Generation with Remote Sensing and GIS in a Southern US 

Campus,” Sustainability 2022, Vol. 14, Page 626, vol. 14, no. 2, p. 626, Jan. 2022. 



AI, IoT and the Fourth Industrial Revolution Review 

VOLUME 13, ISSUE 7 

Page | 38 

[5] A. Moradzadeh, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam, and S. S. Roy, 

“Heating and cooling loads forecasting for residential buildings based on hybrid machine 

learning applications: A comprehensive review and comparative analysis,” IEEE Access, vol. 

10, pp. 2196–2215, 2022. 

[6] B. Madureira, T. Pinto, F. Fernandes, Z. Vale, and C. Ramos, “Context classification in energy 

resource management of residential buildings using Artificial Neural Network,” 2017 

Intelligent Systems Conference, IntelliSys 2017, vol. 2018-Janua, no. September, pp. 225–233, 

2018. 

[7] W. J. N. Turner, I. S. Walker, W. J. N. Turner, I. S. Walker, and J. Roux, “Peak load reductions: 

Electric load shifting with mechanical pre-cooling of residential buildings with low thermal 

mass Modeling occupant behavior in buildings View project International Energy Agency 

Energy in Buildings and Communities Programme, Annex 6,” 2015. 

[8] S. Umamaheswar, L. G. Kathawate, W. B. Shirsath, S. Gadde, and P. Saradha, “Recent 

turmeric plants agronomy analysis and methodology using Artificial intelligence,” 

International Journal of Botany Studies, vol. 7, no. 2, pp. 233–236, 2022. 

[9] J. Runge and R. Zmeureanu, “A review of deep learning techniques for forecasting energy use 

in buildings,” Energies, vol. 14, no. 3, p. 608, Jan. 2021. 

[10] H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of deep learning for renewable 

energy forecasting,” Energy Convers. Manag., vol. 198, no. 111799, p. 111799, Oct. 2019. 

[11] I. Patsakos, E. Vrochidou, and G. A. Papakostas, “A survey on Deep Learning for building 

load forecasting,” Math. Probl. Eng., vol. 2022, pp. 1–25, Jun. 2022. 

[12] A. Mashlakov, T. Kuronen, L. Lensu, A. Kaarna, and S. Honkapuro, “Assessing the 

performance of deep learning models for multivariate probabilistic energy forecasting,” Appl. 

Energy, vol. 285, no. 116405, p. 116405, Mar. 2021. 

[13] R. A. Rajagukguk, R. A. A. Ramadhan, and H.-J. Lee, “A review on deep learning models for 

forecasting time series data of solar irradiance and photovoltaic power,” Energies, vol. 13, no. 

24, p. 6623, Dec. 2020. 

[14] I. Ghalehkhondabi, E. Ardjmand, G. R. Weckman, and W. A. Young II, “An overview of 

energy demand forecasting methods published in 2005–2015,” Energy Syst., vol. 8, no. 2, pp. 

411–447, May 2017. 

[15] T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, and H. Zareipour, “Energy forecasting: A 

review and outlook,” IEEE Open J. Power Energy, vol. 7, pp. 376–388, 2020. 

[16] R. Fazeli, M. Ruth, and B. Davidsdottir, “Temperature response functions for residential 

energy demand – A review of models,” Urban Clim., vol. 15, pp. 45–59, Mar. 2016. 

[17] S. V. Bajay, “Long-term electricity demand forecasting models: A review of methodologies,” 

Electric Power Syst. Res., vol. 6, no. 4, pp. 243–257, Dec. 1983. 

[18] H. Verdejo, A. Awerkin, C. Becker, and G. Olguin, “Statistic linear parametric techniques for 

residential electric energy demand forecasting. A review and an implementation to Chile,” 

Renew. Sustain. Energy Rev., vol. 74, pp. 512–521, Jul. 2017. 

[19] A. A. Mir, M. Alghassab, K. Ullah, Z. A. Khan, Y. Lu, and M. Imran, “A review of electricity 

demand forecasting in low and middle income countries: The demand determinants and 

horizons,” Sustainability, vol. 12, no. 15, p. 5931, Jul. 2020. 

[20] A. Barbato and A. Capone, “Optimization models and methods for demand-side management 

of residential users: A survey,” Energies, vol. 7, no. 9, pp. 5787–5824, Sep. 2014. 

[21] M. Sathanapriya et al., “Analysis of Hydroponic System Crop Yield Prediction and Crop IoT-

based monitoring system for precision agriculture,” 2022, pp. 575–578. 

[22] A. Padma, S. Gadde, B. S. P. Rao, and G. Ramachandran, “Effective Cleaning System 

management using JSP and Servlet Technology,” 2021, pp. 1472–1478. 

[23] K. Thiagarajan, C. K. Dixit, M. Panneerselvam, C. A. Madhuvappan, S. Gadde, and J. N. 

Shrote, “Analysis on the Growth of Artificial Intelligence for Application Security in Internet 

of Things,” 2022, pp. 6–12. 

[24] K. Thiagarajan, M. Porkodi, S. Gadde, and R. Priyadharshini, “Application and Advancement 

of Sensor Technology in Bioelectronics Nano Engineering,” 2022, pp. 841–845. 



AI, IoT and the Fourth Industrial Revolution Review 

VOLUME 13, ISSUE 7 

Page | 39 

[25] S. S. Devi, S. Gadde, K. Harish, C. Manoharan, R. Mehta, and S. Renukadevi, “IoT and image 

processing Techniques-Based Smart Sericulture Nature System,” Indian J. Applied & Pure 

Bio, vol. 37, no. 3, pp. 678–683, 2022. 

[26] S. Gadde, E. Karthika, R. Mehta, S. Selvaraju, W. B. Shirsath, and J. Thilagavathi, “Onion 

growth monitoring system using internet of things and cloud,” Agricultural and Biological 

Research, vol. 38, no. 3, pp. 291–293, 2022. 

 


