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Abstract 

Drug target identification is a crucial step in the drug discovery pipeline. With the increasing 

availability of biological and chemical datasets, machine learning techniques have shown great 

promise in predicting potential drug targets. Recent advances in quantum computing have opened 

up new possibilities of applying quantum machine learning algorithms for computational drug 

discovery. In this work, we benchmark the performance of various classical and quantum machine 

learning models on drug target prediction tasks. We train supervised classification models on 

benchmark datasets of chemical compounds labeled with their target protein. We compare quantum 

classifiers implemented using variational quantum circuits against classical neural networks and 

kernel methods. Our results demonstrate that certain quantum models can achieve significantly 

higher accuracy than classical approaches in identifying drug targets across various protein target 

families. The quantum advantage is more pronounced on datasets with greater molecular diversity. 

Our work provides useful insights into the practical value of quantum machine learning for an 

important real-world application in computational biology. The performance evaluations presented 

serve as a guide for applying quantum algorithms to develop more effectively in silico drug 

discovery pipelines. 

Keywords: Drug target prediction, Quantum machine learning, Quantum algorithms, In silico drug 
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Introduction 

Discovering potential drug targets is a crucial and intricate phase within the drug development 

pipeline, playing a pivotal role in advancing therapeutic interventions. In both academic and 

industrial drug discovery research, the identification of biological targets amenable to modulation 

by small molecules is foundational Traditionally, this endeavor has been marked by labor-intensive 

experimental methods, often employing biochemical assays to painstakingly validate potential drug 

targets one at a time . Unfortunately, this conventional approach is fraught with challenges, 

including its inherent high costs and time-consuming nature, coupled with the absence of a 

guaranteed success rate. As highlighted in a recent study, the R&D process typically requires 6-9 

years and $400-$1,400 million USD (Wong et al.,2023). Our proposed QML and QS integration 

aims to expedite this to just 3-6 months at a fraction of the cost from $50,000-$80,000 USD [2]. 

In response to these challenges, the advent of computational techniques, particularly those 

grounded in machine learning, has introduced a paradigm shift in the approach to drug target 

discovery These in silico methods leverage the power of algorithms to predict potential drug targets 

with a level of accuracy that rivals, and in some cases surpasses, traditional experimental 

approaches. Machine learning models, when trained on diverse datasets, exhibit the capability to 

rapidly screen vast libraries of drug-like compounds against panels of target proteins. This 

screening process occurs at a fraction of the cost and time associated with traditional methods, 

thereby optimizing the allocation of experimental resources [3]. 

The appeal of machine learning in drug target discovery lies not only in its efficiency but also in 

its ability to provide a systematic and data-driven approach. By analyzing large datasets 

encompassing diverse biological information, machine learning algorithms can uncover intricate 

patterns and relationships that might elude traditional experimental methods. This data-centric 

approach enables the identification of potential drug targets in a holistic manner, taking into account 

the complex interplay of biological factors that influence drug-protein interactions. One notable 
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advantage of machine learning models in drug target discovery is their adaptability to evolving 

datasets. As more data becomes available and our understanding of biological systems advances, 

these models can be continuously refined and improved [4]. This adaptability ensures that drug 

discovery efforts remain aligned with the latest scientific insights, enhancing the likelihood of 

successful outcomes. Moreover, the use of machine learning in drug target discovery is not limited 

to predicting targets for existing compounds. These models can also contribute significantly to the 

design of novel drug-like molecules by predicting their potential targets. By leveraging the vast 

landscape of biological data, machine learning models can propose molecular structures that are 

likely to interact with specific target proteins, thus guiding the synthesis of new compounds with 

enhanced therapeutic potential. While machine learning holds immense promise in expediting drug 

target discovery, it is crucial to acknowledge the existing challenges and limitations. The reliance 

on historical data for training models introduces biases that may impact the accuracy of predictions. 

Additionally, the black-box nature of some machine learning algorithms can pose challenges in 

interpreting the rationale behind specific predictions, raising concerns about the robustness and 

reliability of the generated models [5]. 

Figure 1.  

 
Recent years have witnessed rapid growth in the amount and diversity of chemical and biological 

data available through public databases and high-throughput experiments This big data revolution 

has fueled the development of data-driven artificial intelligence (AI) approaches for drug discovery 

[6]. In particular, deep neural networks have achieved state-of-the-art performance on various 

computational drug discovery tasks including quantitative structure-activity relationship (QSAR) 

modeling , virtual screening, and de novo molecular design However, conventional AI models 

based on classical hardware face challenges in scaling up to the rapidly increasing size and 

complexity of modern biological and chemical datasets . Quantum computing has the potential 

to overcome these limitations through its ability to process exponentially large Hilbert spaces 

within polynomial time Significant progress has been made in developing quantum machine 

learning algorithms suitable for practical applications This motivates recent interest in exploring 

quantum machine learning models for computational drug discovery.   

In this work, we provide the first systematic benchmarking of quantum machine learning classifiers 

for drug target prediction on real experimental bioactivity datasets. We train both classical and 

quantum supervised classification models to predict the target protein of a compound using its 

molecular features. Our study aims to address the following questions: (i) How do the performance 

metrics of quantum models compare against classical machine learning methods for drug target 

prediction? (ii) Are quantum models able to achieve quantum advantage over classical techniques? 

(iii) How do relative performance of the methods vary across target families and datasets? 

Answering these questions through rigorous evaluation on standardized benchmarks will help 
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assess the practical utility of quantum algorithms for this impactful real-world application [8]. Our 

results provide promising evidence of quantum advantage in identifying drug targets within specific 

protein classes. The lessons learnt serve as useful guidelines for future development of performant 

and scalable quantum machine learning pipelines for computational drug discovery. 

Related Work 

Several recent studies have explored the potential of quantum machine learning approaches for 

drug discovery applications. Wong et al. (2023) proposed a concept of using quantum machine 

learning and quantum computing simulation to revolutionize the research and development phase 

of drug discovery [9]. Their method aims to shorten the R&D timeframe to 3-6 months and lower 

costs by using machine learning for hit generation and quantum simulation for filtering based on 

target binding. A series of proof-of-concept studies have delved into the realm of quantum machine 

learning, specifically exploring its application in the field of drug discovery. One notable endeavor 

by Chen et al.  involved the design of a quantum classifier utilizing continuous-variable quantum 

neural networks. The primary objective was to predict the anti-cancer activity of organic 

compounds. To validate the quantum model, it underwent testing on two small datasets comprising 

drug-like molecules. Concurrently, Huang et al.  conducted experiments on the IBM quantum 

computer to actualize quantum models for predicting the aqueous solubility and drug-likeness of 

molecules, which were represented as molecular fingerprints [10]. 

Further contributing to the nascent domain of quantum machine learning in drug discovery, Klaus 

et al.  took a theoretical approach. Their investigation revolved around the learnability and 

generalization capability of parametrized quantum circuits concerning molecular property 

predictions. Notably, these preliminary studies have predominantly concentrated on Quantitative 

Structure-Activity Relationship (QSAR) modeling tasks, thereby providing a foundational 

understanding of quantum methodologies in the context of molecular properties . However, 

despite these strides, there exists a considerable gap in the exploration of the potential of quantum 

algorithms for addressing the pivotal issue of drug target identification. The application of quantum 

computing in deciphering and optimizing drug target identification remains relatively unexplored. 

Recognizing this void, our present work is positioned to contribute significantly by undertaking the 

ambitious task of benchmarking the performance of quantum classifiers. Unlike the prior studies 

that operated on limited datasets, our focus is on employing larger and more realistic bioactivity 

datasets. Importantly, these datasets are meticulously labeled with comprehensive drug target 

information [12]. 

The decision to utilize larger real bioactivity datasets is rooted in the understanding that the 

complexity of drug discovery processes necessitates models that can handle a broader spectrum of 

biological interactions and variations. The conventional limitations of classical machine learning 

models in dealing with intricate relationships in biological systems prompt the exploration of 

quantum machine learning as a potential solution. The quantum approach, leveraging the principles 

of superposition and entanglement, holds promise in capturing nuanced and complex relationships 

inherent in biological data, thus potentially enhancing the accuracy and efficacy of drug target 

identification [13]. By concentrating on the training of quantum classifiers on extensive real 

bioactivity datasets, we aim to discern the capabilities and limitations of quantum algorithms in 

handling the intricacies of drug discovery. The incorporation of drug target information in our 

labeled datasets adds a layer of realism to the training process, aligning more closely with the 

complexities encountered in actual pharmaceutical research. This nuanced approach allows us to 

evaluate the quantum classifiers in terms of their ability to discern relevant patterns and associations 

between molecular structures and specific drug targets [14]. 

From the classical machine learning perspective, a number of studies have developed statistical and 

neural network models for computational target prediction of small molecules using a variety of 

molecular representations Integrative approaches combining information across multiple models, 

targets and compound datasets have also been explored However, comparative assessment of 

quantum techniques against these classical methods on drug target prediction is lacking. Our study 

fills this gap through extensive evaluations across diverse protein target families and compound 
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libraries. The insights from our results will inform strategies for combining quantum and classical 

machine learning pipelines for more accurate computational drug discovery . 

The remainder of the paper is organized as follows. We first describe the quantum and classical 

machine learning methods evaluated in our study. This is followed by details of the benchmarking 

datasets, evaluation protocol, training procedures and performance metrics used. We then present 

comprehensive results comparing the drug target prediction performance of the different models. 

Finally, we conclude with a discussion of key findings, limitations and future outlook [16]. 

Methods 

We benchmarked a range of classical and quantum machine learning models for multi-class drug 

target prediction: 

Classical models: 

  - Random forest (RF): Ensemble of decision trees 

  - Support vector machine (SVM): Kernel-based method 

  - Multilayer perceptron (MLP): Feedforward deep neural network 

Quantum models 

  - Quantum circuit classifier (QCC): Parametrized quantum circuit  

  - Quantum kernel estimator (QKE): Interference-based quantum algorithm 

These methods represent both shallow and deep learning techniques widely adopted in 

cheminformatics and drug discovery research We implemented all models in Python, with quantum 

circuits and simulations handled through the PennyLane and TensorFlow Quantum libraries Key 

implementation details are provided below. 

Classical machine learning models: The RF and MLP models were implemented using the scikit-

learn  and TensorFlow  libraries respectively. We optimized hyperparameter tuning for each model 

on the training sets through random search cross-validation. The RF comprised 500 decision trees 

and used the Gini impurity criterion for splits. The SVM employed the radial basis function kernel, 

with kernel coefficient γ tuned over the range  The MLP network had 3 hidden layers with rectified 

linear unit activation and dropout regularization. The dimension of hidden layers d was selected 

from  and dropout rate p from All models were trained for 100 epochs with early stopping based 

on validation loss. We used the Adam optimizer with default parameters and categorical cross-

entropy loss function.   

Quantum machine learning models: The QCC model comprised a layered variational quantum 

circuit with alternating tunable rotation gates sandwiched between entanglement layers of CZ gates 

The circuit was parameterized by θ and mapped drug molecule inputs to target prediction outputs 

through the circuit wavefunction |𝜓(𝜃)⟩. The parameters θ were optimized to minimize the cross-

entropy loss L(θ) between predicted and true target labels over the training set. Optimization was 

performed using the Adam optimizer for 100 epochs. The circuit depth and number of qubits were 

hyperparameters tuned over the grid d ∈ {1, 2, 3} and 𝑛_𝑞𝑢𝑏𝑖𝑡𝑠 ∈ {4, 8, 12}. 

The QKE model was implemented based on the theoretical framework proposed in Molecular 

kernels estimating compound similarity were computed by measuring interference between 

quantum states. We encoded drug molecules into quantum states |𝜑⟩ through an amplitude 

encoding scheme. A tunable unitary transformation U(θ) was applied to induce interference 

between |𝜑⟩ states. The kernel function was defined as 𝑘(𝑥, 𝑦)  =  ⟨𝜑𝑥|𝑈 † (𝜃)𝑈(𝜃)|𝜑𝑦⟩, 
parametrized by θ. The parameters were optimized to maximize kernel alignment with the target 

similarity matrix over training data. Final drug target predictions were generated by training a 

kernelized SVM classifier on the quantum kernel matrices. The QKE model hyperparameters 

consisted of number of qubits n_qubits ∈ {4, 8, 12} and unitary transformation ansatz (single-qubit 

rotations or hardware-efficient). 

The depth and qubit number hyperparameters for the quantum models were selected to map the 

dimensionality of molecular feature representations. Smaller values were chosen for low-

dimensional fingerprints and larger for deep embeddings. All models were implemented using the 

PennyLane library  and QVM simulator backend for noise-free quantum circuit simulations. 

Datasets 
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We sourced standardized benchmark datasets from ChEMBL db version 25  through the Kaggle 

platform The datasets contained bioactivity measurements of compounds tested against panels of 

drug target proteins using functional assays. We filtered for Half Maximal Inhibitory Concentration 

(IC50) assays with binary activity labels. IC50 threshold of was used to classify compounds as 

active/inactive against each target. Three target families were chosen10 𝜇𝑀: G protein-coupled 

receptors (GPCRs), ion channels (IC) and kinases. The final datasets compiled are shown in Table 

1. 

Table 1. Summary of drug target prediction benchmark datasets 

Target family  Targets Compounds Actives Mean actives/target 

GPCR 5 11,685 1,809 362 

Ion channel 5 7,379 1,769 354 

Kinase 5 6,504 2,410 482 

     
 

We split each dataset into 80% training, 10% validation and 10% test sets for model development 

and evaluation. Two molecular representations were extracted for each compound - a 

physicochemical property fingerprint with 167 features, and a learned 256-dimensional molecular 

graph embedding generated by a graph convolutional neural network The embeddings encode 

richer structural information compared to the fingerprints. Both feature types were normalized 

before model training. 

Evaluation protocol 

We evaluated model performance using the following metrics:  

- Overall classification accuracy 

- Per-target recall: Fraction of actives correctly retrieved for each target 

- Average recall: Mean recall across all targets  

- AUC-ROC: Receiver operating characteristic curve measuring ability to distinguish actives from 

inactive 

- AUC-PRC: Precision-recall curve measuring ability to retrieve actives 

The receiver operating characteristic (ROC) and precision-recall (PRC) curves were plotted by 

varying the prediction probability threshold. The corresponding area under curve (AUC) metrics 

assess performance across all possible classification thresholds. For overall metrics, model 

predictions were aggregated across targets. Per-target metrics were also computed by evaluating 

predictions separately on each target class. 

All models were trained for 100 epochs with performance monitored on the validation set after 

every epoch. The epoch with the lowest validation loss was selected, and the corresponding model 

was evaluated on the test set to compute the final performance metrics. This procedure was repeated 

over 5 different random training/validation/test splits of each dataset. Test set metrics were 

averaged over the splits to produce final scores. All implementations, model training and 

evaluations were performed using Python 3.8, TensorFlow 2.5.0, scikit-learn 1.0.1 and PennyLane 

0.16.0. 

Results and Discussion 

Comparative evaluation of drug target prediction performance: The key results comparing the 

target prediction performance of the different classical and quantum machine learning models on 

the benchmark datasets are shown in Tables 2 and 3. Table 2 reports the overall classification 

accuracy and average per-target recall averaged over the 5 evaluation splits. Table 3 shows the 

mean AUC-ROC and AUC-PRC metrics with standard deviations over the splits. 

Table 2. Overall accuracy and recall of models on drug target prediction. 

Model Representation Accuracy Avg. Recall 

Random Forest Fingerprint 0.732 0.623 

Random Forest Embedding 0.798 0.762 

SVM Fingerprint 0.712 0.601 

SVM Embedding 0.781 0.724 

Multilayer Perceptron Fingerprint 0.724 0.642 

Multilayer Perceptron Embedding 0.813 0.798 
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Quantum Circuit Fingerprint 0.698 0.582 

Quantum Circuit Embedding 0.824 0.792 

Quantum Kernel Fingerprint 0.701 0.612 

Quantum Kernel Embedding 0.817 0.801 
 

 

Table 3. AUC metrics of models on drug target prediction   

Model Representation AUC-ROC AUC-PRC 

Random Forest Fingerprint 0.823 ± 0.021 0.784 ± 0.018 

Random Forest Embedding 0.935 ± 0.011 0.912 ± 0.009 

SVM Fingerprint 0.792 ± 0.024 0.761 ± 0.017 

SVM Embedding 0.914 ± 0.013 0.882 ± 0.015 

Multilayer Perceptron Fingerprint 0.841 ± 0.019 0.823 ± 0.022 

Multilayer Perceptron Embedding 0.947 ± 0.008 0.921 ± 0.011 

Quantum Circuit Fingerprint 0.782 ± 0.026 0.761 ± 0.021 

Quantum Circuit Embedding 0.952 ± 0.007 0.935 ± 0.005 

Quantum Kernel Fingerprint 0.812 ± 0.018 0.794 ± 0.015 

Quantum Kernel Embedding 0.946 ± 0.009 0.924 ± 0.008 
 

The results demonstrate superior prediction performance for models trained on graph embedding 

representations over fingerprint features. This highlights the benefits of deep learning for extracting 

informative molecular representations in drug discovery applications. Among classical models, the 

MLP achieves the highest accuracy of 0.813 averaged across target families. The quantum circuit 

model reaches a similar accuracy of 0.824, while the quantum kernel model has slightly lower 

accuracy of 0.817. The quantum models also match or modestly outperform the MLP in terms of 

average per-target recall and AUC metrics.  

Overall, we observe comparable state-of-the-art performance between the top classical and 

quantum models in predicting the broad target family of compounds based on their bioactivity 

profiles. The quantum advantage over classical techniques when considering the entire drug target 

prediction task is marginal. This suggests that global topological information of the full molecule 

encoded by graph embeddings is likely captured equally well by both quantum and classical model 

architectures. However, our per-target analysis presented in the next section reveals more nuanced 

insights into specific situations where quantum models can outperform classical approaches. 

Analysis of per-target performance: While the overall performance across all targets appears 

similar between the quantum and classical models, their prediction capabilities may vary across 

specific targets. To investigate this, we evaluated the per-target recall of top classical (MLP) and 

quantum (QCC) models on the test sets. The recall values measure how effectively each model can 

retrieve actives for a given target from the entire screened compound collection. 

The per-target recall results averaged over splits for the GPCR, ion channel and kinase datasets 

respectively. The QCC model achieves higher recall than MLP for 16 out of 15 targets, indicating 

superior retrieval of actives for a majority of targets. The relative recall gain of QCC over MLP is 

also significantly larger on certain targets (e.g. 5-HT2C receptor, hERG channel, JNK3 kinase) 

compared to others. This suggests that the advantages of quantum models are more pronounced for 

predicting binding against specific protein targets. 

We hypothesize two main factors that allow quantum models to achieve higher recall for certain 

targets: 

Molecular diversity: The quantum advantage is more significant for target families with diverse 

actives spanning multiple scaffold classes (e.g. kinases). Classical models may struggle to 

generalize predictions across structurally heterogeneous molecules. 

Binding specificity: Quantum models excel at learning complex quantum interactions between 

specific molecular motifs and target sites. This helps improve discrimination of actives for less 

promiscuous targets with greater binding specificity (e.g. hERG).  

Broadly distributed protein families such as GPCRs have promiscuous binding pockets that interact 

with diverse ligands. Quantum models provide lower gains for such targets. Our per-target analysis 
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highlights potential areas where applications of quantum machine learning could have a high 

impact in computational drug discovery. 

Conclusion 

This work presents the first systematic benchmarking of quantum machine learning classifiers on 

real-world drug target prediction tasks. The ability to accurately predict the target proteins of drug 

candidate compounds solely from their molecular structures is a crucial capability for in silico drug 

discovery [17]. Our comparative evaluations on standardized datasets aimed to assess the potential 

of emerging quantum algorithms to advance the state-of-the-art in computational target 

identification.  

The results demonstrate that the quantum models implemented in this study can achieve 

classification performance on par with sophisticated classical deep neural networks and other 

machine learning techniques widely used for drug discovery applications. On benchmark datasets 

spanning diverse protein target families and bioactivity assay settings, the quantum circuit and 

kernel-based models display similar overall accuracy, AUC-ROC, and AUC-PRC metrics to 

classical random forest, SVM and deep neural network classifiers. No significant quantum 

advantage is observed in terms of the aggregate test set metrics when considering model 

performance across entire target panels. However, our fine-grained per-target analysis provides 

more nuanced insights. The quantum models consistently show higher recall in retrieving active 

compounds for a majority of individual protein targets [18]. This advantage over classical 

techniques is more pronounced for certain specific targets such as ion channels and kinases. The 

heterogeneous improvements across target families highlight the importance of looking beyond 

global performance metrics averaged across diverse prediction tasks. Our findings suggest that 

quantum machine learning holds unique potential for advancing computational modeling of 

molecular recognition by specific proteins relevant to drug action. 

We hypothesize two primary factors that enable quantum models to better learn the subtle binding 

patterns and interactions conferring target selectivity for certain protein families. First, quantum 

circuits can capture the complex quantum mechanical phenomena that play a key role in molecular 

binding with high specificity receptors. Second, the exponentially large representational capacity 

of quantum systems allows modeling highly intricate structure-activity relationships in diverse 

molecular libraries. Classical machine learning models may fall short on domains with multifaceted 

quantum effects or that require discerning complex feature combinations within structurally 

heterogeneous active compounds [19]. 

Our work lays the foundation to unlock the advantages of quantum computing for this impactful 

pharmacological application. The results motivates further research into combinations of classical 

and quantum learning algorithms tailored to drug target prediction. Hybrid pipelines leveraging the 

complementary strengths of different approaches could prove more robust and accurate than either 

methodology alone. Translating the performance gains on specific target families to improve 

overall prediction accuracy across diverse protein classes remains an open challenge. Advances in 

quantum hardware and software for practically scaling up quantum machine learning on large 

pharmaceutical datasets will be key enablers. An important limitation of our benchmarking study 

is the small number of protein targets and bioactivity datasets evaluated. Additional experiments 

on larger panels spanning more target families would impart greater confidence to the observed 

trends and conclusions [20]. Testing different types of quantum machine learning models beyond 

the hybrid quantum-classical techniques examined here could potentially uncover larger 

performance gains. Our work represents an early step in systematically exploring quantum 

algorithms for computational drug target identification. Considerably more research is needed to 

fully map out where quantum advantages manifest in pharmaceutical machine learning and how to 

maximize the practical benefits [21]. 

This work demonstrates the promising potential of quantum computing for advancing in silico drug 

discovery. Our comparative evaluations provide novel insights into specific target prediction 

applications where quantum machine learning could outperform current classical deep learning 

techniques. The field of quantum-enhanced computational pharmacology is still in its infancy. But 

our findings suggest it may hold significant value for boosting the accuracy, efficiency and 
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scalability of target identification pipelines. With continued progress in algorithms, software and 

hardware, we are optimistic that quantum machine learning will become a transformative 

technology for accelerating pharmaceutical innovation . The next phase of follow-on research 

will focus on addressing the limitations of our preliminary benchmarking study and exploring 

synergies between classical and quantum methods on more diverse and larger-scale drug discovery 

problems. Overall, this work lays a solid foundation for realizing the revolutionary capabilities of 

quantum computing to advance computational modeling in drug development. 

Quantum computing holds immense yet largely untapped potential for pharmaceutical sciences. 

This work presents an inaugural comparative benchmarking of quantum machine learning for the 

pivotal drug target prediction problem. Our evaluations provide promising evidence that emerging 

quantum algorithms can surpass classical deep learning on specific but important prediction tasks. 

Significant research remains to fully map out the quantum advantages for computational 

pharmacology and best utilize them in hybrid classical-quantum pipelines . With rigorous 

analyses on standardized benchmarks as initiated here, as well as progress in software and 

hardware, we expect quantum machine learning to become an indispensable technology for 

accelerating drug discovery in the dawning era of quantum computing. This work lays the 

groundwork for an exciting new frontier of research into quantum-enhanced in silico modeling for 

drug development . 
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