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Abstract 

Anomaly detection plays an integral role in a broad range of applications within the Internet of 

Things (IoT), such as preventive maintenance, health monitoring, fraud detection, and fault 

prediction. This study undertakes a comprehensive exploration of the methods commonly used 

for anomaly detection in IoT time series data. These methods encompass Statistical Techniques, 

Isolation Forest, Autoencoder Neural Networks, and Long Short-Term Memory Units (LSTMs), 

each with their unique strengths and challenges. Statistical techniques, such as ARIMA, ETS, 

and STL, model the regular pattern of a time series via a stochastic model, highlighting 

anomalies as instances that deviate from this model. The Isolation Forest algorithm, on the other 

hand, isolates anomalies based on their shorter average path lengths in an ensemble of Isolation 

Trees. Autoencoders and LSTMs, as types of artificial neural networks, detect anomalies via 

high reconstruction error and significant deviation from predicted values, respectively. The 

research also acknowledges the applicability of other methods such as K-means clustering, 

DBSCAN, and XGBoost according to the specific requirements of IoT data. Selection of an 

appropriate model depends largely on the data characteristics and the particular use case, with 

data properties including multivariate or univariate nature, presence of trends or seasonality, and 

type of anomalies playing a crucial role. 
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Introduction 

The Internet of Things, often abbreviated as IoT, marks a pivotal advancement in the field of 

technology, rapidly reshaping numerous sectors of society. It is a concept that refers to the 

network of interconnected devices, objects, and systems, which are capable of collecting and 

sharing data without requiring human-to-human or human-to-computer interaction [1], [2]. 

Each device or 'thing' in this connected network has a unique identity and the ability to 

automatically transfer data over a network. The emergence of IoT is driven by an expansion of 

the Internet, shrinking hardware, progress in data analytics, and the rise of cloud computing. 

These technological advancements have made it feasible and cost-effective to transform 

everyday objects into smart devices with added functionality. 

The Internet of Things (IoT) is a complex system composed of three major components: sensors, 

networks, and applications. Sensors, or "things" in the IoT, are the physical devices that collect 

data from the environment. These could be temperature sensors, humidity sensors, light sensors, 

motion sensors, etc. They are equipped with unique identifiers and have the ability to transfer 

data over a network without requiring human-to-human or human-to-computer interaction. 

Different sensors have different capabilities; for example, some sensors are only able to collect 

data, while others are able to act based on the data they receive [3], [4]. 

Networks play a crucial role in connecting the "things" in the IoT to the internet. They enable 

data transfer from sensors to servers, typically via the internet. Networks in IoT might be made 

up of wired connections (Ethernet, for instance) or wireless connections (such as Wi-Fi, cellular 

networks, Bluetooth, Zigbee, or LoRaWAN). The choice of network often depends on factors 

such as data transmission speed requirements, power consumption, cost, and geographical 

coverage. 
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Applications are the final component of the IoT [5], [6]. They collect, process, and analyze the 

data gathered by sensors and transmitted via networks. Applications in IoT can range from 

simple mobile apps that display data from a personal fitness tracker to complex, machine 

learning-driven software that can predict equipment failures in a factory before they happen 

based on sensor data. The application not only makes sense of the raw data but also provides 

actionable insights that can be used to improve efficiency, safety, comfort, or other important 

factors in a given context [7]. 

IoT connectivity refers to the communication technologies used to connect the "things" in the 

IoT with each other and with the internet. These technologies can be broadly categorized into 

short-range (or local) and long-range (or wide area) networks. Short-range networks include 

technologies like Bluetooth, Zigbee, and Wi-Fi. They are typically used for applications where 

the devices are located close to each other, such as in a smart home or a manufacturing plant. 

On the other hand, long-range networks include technologies like cellular (4G, 5G), LoRaWAN, 

and NB-IoT. These are often used for applications where the devices are spread over a larger 

geographical area, like a smart city or a supply chain. Each of these connectivity options has its 

own pros and cons. For example, while Wi-Fi provides high data rates, it consumes more power 

and has a limited range compared to technologies like LoRaWAN.  

The operation of an IoT system involves several steps and each of the key components plays a 

vital role in this process. The first step in the IoT process chain is data collection, which is 

performed by the sensors. Sensors continuously monitor their environment and collect data. For 

example, a temperature sensor in a smart home would continuously monitor the temperature 

and generate data representing the temperature levels [8]. 

Once the data is collected, it needs to be sent to a server or cloud platform where it can be 

processed and analyzed. This is where the network comes in. The sensors send the data they've 

collected over the network to the server [9], [10]. This can be done in real-time or at intervals, 

depending on the requirements of the IoT application. For instance, a health monitoring 

application would require real-time data transfer, while a soil moisture monitoring system in a 

farm might only require data updates once a day [11]. 

Once the data arrives at the server, it is processed and analyzed by the application. The 

application might apply complex algorithms or machine learning models to the data to derive 

insights [12]–[14]. For example, a factory monitoring application might analyze sensor data to 

predict when a machine is likely to fail, allowing for preventative maintenance [15]. 

The final step in the IoT process chain is action. Based on the insights derived from the data, 

the application might trigger certain actions. These could be as simple as sending a notification 

to a user's phone, or as complex as automatically adjusting the settings of a machine in a factory 

to prevent a predicted failure. This closes the loop in the IoT process chain, with the "things" in 

the IoT collecting data, the data being transferred and processed, and the insights from the data 

being used to take action. 

Different techniques  

Statistical techniques for anomaly detection have been in use for a considerable amount of time 

and are among the most tried-and-true methods of discerning irregularities in datasets. These 

techniques operate under the assumption that the normal pattern of a time series dataset can be 

modeled using a stochastic or random process model, and anomalies are defined as those 

instances that do not conform to this model. There are numerous statistical methods that can be 

employed for this purpose, and among the most well-known are Autoregressive Integrated 

Moving Average (ARIMA), Exponential Smoothing (ETS), and Seasonal and Trend 

decomposition using Loess (STL). 

The Autoregressive Integrated Moving Average (ARIMA) is a popular statistical method used 

for forecasting time series data. ARIMA models are based on the idea that the information in 

the past values of the time series can alone be used to predict the future points [16], [17]. An 

ARIMA model is characterized by three parameters: (1) the order of the autoregressive part (p), 
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(2) the degree of differencing (d), and (3) the order of the moving-average part (q). The 

identification of these parameters is usually done by inspecting the autocorrelation and partial 

autocorrelation plots. Once the ARIMA model is fitted, the residuals are calculated and tested 

for randomness. Any non-random patterns could indicate an anomaly.  

Exponential Smoothing (ETS) is another classic time series forecasting method. ETS models 

are suitable for non-stationary data and can handle trends and seasonality. The core idea behind 

ETS is to give more weight to recent observations and less weight to older ones. Depending on 

the presence of trend and seasonality, different variations of ETS are used such as Simple 

Exponential Smoothing (no trend or seasonality), Double Exponential Smoothing (trend but no 

seasonality), and Triple Exponential Smoothing (both trend and seasonality). After fitting the 

ETS model, residuals are extracted and checked for anomalies, which are usually indicated by 

significant deviations. 

The Seasonal and Trend decomposition using Loess (STL) is a method that decomposes a time 

series into three components: trend, seasonal, and remainder (or irregular) components [18]. 

The 'Loess' in STL stands for locally estimated scatterplot smoothing, which is a non-parametric 

regression method that combines multiple regression models in a k-nearest-neighbor-based 

meta-model. STL has the advantage of being able to handle any type of seasonality, not only 

annual but also daily, weekly, etc. After the time series is decomposed, anomalies can be easily 

detected in the remainder component as they are the instances that could not be explained by 

the trend and the seasonal components. 

However, it is important to note that while these statistical methods are powerful, they are not 

without limitations [19]–[21]. For example, ARIMA models assume linearity and Gaussian 

errors, which might not hold in all situations. ETS methods, although capable of handling trend 

and seasonality, might struggle with non-linear patterns or when the trend and seasonal patterns 

change over time. STL, on the other hand, assumes that the seasonality is of known and constant 

period, which might not be true in some cases. Furthermore, all these methods work best on 

long time series with at least a few seasons of data. 

Despite their limitations, statistical methods are a fundamental part of any toolbox for time 

series analysis and anomaly detection. They provide a solid statistical foundation, upon which 

more modern and complex methods, like machine learning, have been built. But their 

importance does not diminish with the advent of these newer techniques. On the contrary, 

statistical methods often serve as a first line of defense in the process of anomaly detection, 

providing initial insights and helping to inform more complex analyses [22]. 

Isolation Forest is a unique and innovative anomaly detection method. Unlike traditional 

methods which operate by learning and establishing a profile of what's normal and then 

identifying anything that doesn't fit this profile as an anomaly, Isolation Forest takes a different 

approach by isolating anomalies. It's an unsupervised learning algorithm that builds an ensemble 

of "Isolation Trees" or "iTrees" for a given dataset, with anomalies characterized as instances 

that have shorter average path lengths on these iTrees [23], [24]. 

The core idea behind Isolation Forest is that anomalies are data points that are few and different, 

which should make them easier to 'isolate' from the rest of the data. The algorithm operates by 

randomly selecting a feature from the dataset and then randomly selecting a split value between 

the maximum and minimum values of that feature [25], [26]. This process recursively continues, 

and it results in a tree structure, the iTree, where the path length from the root node to the 

terminating node is indicative of how anomalous the data point is [27]. 

The reasoning here is that if a data point is an anomaly, it should not conform to the general 

pattern of the data and should be easier to isolate, leading to a shorter path length in the iTree. 

On the other hand, 'normal' data points, which conform to the general pattern, are harder to 

isolate and thus result in longer path lengths. 

A few features make Isolation Forest particularly appealing. For one, it doesn't require a normal 

profile to be established first, as is the case with most traditional methods. This makes it more 
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adaptive to changes in what's considered 'normal'. Also, since it's not distance-based, Isolation 

Forest is more immune to the curse of dimensionality and can handle high-dimensional data 

more effectively than many traditional anomaly detection methods. 

Isolation Forest constructs multiple iTrees on different sub-samples of the dataset, creating an 

'ensemble' of iTrees. The anomaly score is then calculated as the average of the path lengths for 

a data point across all the iTrees. A shorter average path length indicates a higher likelihood of 

a point being an anomaly. 

Like any method, Isolation Forest has its limitations. For instance, it might struggle with 

detecting global anomalies if the dataset has too many dimensions. Also, if the anomalies are 

'swamped' or masked by normal points and hence are not easily 'isolatable', Isolation Forest may 

struggle to detect them. Despite these limitations, Isolation Forest is a highly effective and 

efficient method for detecting anomalies, especially for high-dimensional datasets or when the 

definition of 'normal' changes over time[28]–[30] . 

In summary, Isolation Forest is an innovative approach that shifts the focus from profiling 

'normal' data points to isolating anomalies. It's a powerful and efficient method for anomaly 

detection, particularly suited to situations where the 'normal' is evolving, or where the data is 

high-dimensional. Its unique approach and robust performance make it a vital tool in the data 

scientist's toolbox for anomaly detection. 

Autoencoder Neural Networks are a type of artificial neural network primarily used for learning 

efficient representations of input data, also known as codings. Autoencoders are a self-

supervised learning technique that leverages the principles of data encoding and decoding for 

anomaly detection. Their architecture is symmetric, consisting of an encoder that compresses 

the input into a latent-space representation, and a decoder that reconstructs the input from this 

representation [31], [32]. 

The primary idea behind using autoencoders for anomaly detection is that they are trained to 

minimize reconstruction error — the difference between the original input and the reconstructed 

output [33]. If the input data are normal instances, autoencoders can learn their structure 

effectively, leading to a low reconstruction error. On the other hand, if the input data are 

anomalies (which should be rare and significantly different from normal instances), 

autoencoders will struggle to reconstruct these instances accurately, leading to a high 

reconstruction error. 

During the training process, the autoencoder learns to extract meaningful features from the input 

data in the encoding stage and uses these features to reconstruct the input in the decoding stage. 

The goal is to create a compact, efficient representation of the data that captures its most 

important features, which can then be used to reproduce the original input with a high degree of 

fidelity [32], [34]. 

In anomaly detection, autoencoders are typically trained on normal instances only, allowing 

them to learn the pattern of normal data thoroughly. Once trained, the autoencoder can then be 

used to reconstruct new instances. If these new instances are similar to the normal instances the 

model was trained on, they can be accurately reconstructed, and the reconstruction error will be 

low. However, if these new instances are significantly different or anomalous, the autoencoder 

will have difficulty accurately reconstructing them, and the reconstruction error will be high. 

Therefore, a high reconstruction error can be a signal of an anomaly[35] . 

The power of autoencoders comes from their ability to handle complex and high-dimensional 

data, their flexibility and adaptability, and their capacity to capture non-linear relationships in 

the data. However, they also have limitations [36], [37]. The performance of autoencoders can 

significantly depend on the choice of architecture (number of layers, number of nodes per layer, 

etc.), and the selection of a suitable architecture requires domain knowledge and experience. 

Moreover, autoencoders require large amounts of data and computational resources for training. 

Despite these challenges, autoencoders have proven to be an effective tool for anomaly detection 

in various domains, including fraud detection, industrial damage detection, and medical 
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anomaly detection, to name a few. By focusing on the reconstruction of input data, autoencoders 

provide an intuitive and powerful approach for identifying instances that do not conform to the 

norm, making them a valuable tool in the field of anomaly detection [38], [39]. 

Long Short-Term Memory Units (LSTMs) are a specialized type of Recurrent Neural Network 

(RNN) that have the ability to learn and remember information over long sequences of data, 

making them particularly well-suited for handling time series data and hence, for time series 

anomaly detection [40]. 

In time series anomaly detection, an LSTM network can be trained on normal sequences of data, 

thereby enabling it to learn the inherent temporal dependencies and patterns within these 

sequences. Essentially, the LSTM learns to predict the next value in a sequence based on its 

understanding of the pattern in the prior data points. This pattern learning and prediction 

capability forms the basis for anomaly detection [41], [42]. 

For normal data, the LSTM's prediction for the next data point should align well with the actual 

value, resulting in a low prediction error. However, for anomalous data, which by definition 

deviates from the normal pattern, the LSTM's prediction is likely to be significantly off from 

the actual value, resulting in a high prediction error. This high prediction error is therefore an 

indicator that an anomaly has occurred. 

LSTM's advantage lies in its ability to handle long sequences of data and its memory capability. 

Traditional RNNs suffer from the vanishing gradient problem, where the contribution of 

information decays geometrically over time, making them unable to handle long sequences and 

causing them to forget the earlier data points. LSTMs solve this problem with a unique design 

of memory cell which includes a 'forget gate', an 'input gate', and an 'output gate'. These elements 

work together to regulate the addition and removal of information to and from the memory cell, 

allowing LSTMs to maintain and access information over a longer period of time [43]. 

Despite the strengths of LSTMs, there are some challenges. Like other deep learning methods, 

LSTMs require a significant amount of data and computational resources for training. They can 

also be sensitive to the choice of hyperparameters and might require careful tuning to achieve 

optimal performance. Moreover, as a black-box model, LSTMs lack interpretability which can 

be a hindrance in scenarios where understanding the reasoning behind a prediction is important. 

Nevertheless, due to their ability to understand and learn from long sequences of data, LSTMs 

have proven to be a powerful tool for anomaly detection in time series data. They have been 

successfully applied in various domains such as fraud detection, health monitoring, and network 

intrusion detection. Through their unique design, LSTMs are able to identify anomalies in time-

dependent data where traditional methods might fail, thereby making them an indispensable tool 

in the field of time series anomaly detection [44], [45]. 

 

Conclusion 

This research has presented an in-depth analysis of the commonly used methods for anomaly 

detection in the context of the Internet of Things (IoT), a crucial area with wide-ranging 

applications such as preventive maintenance, health monitoring, fraud detection, and fault 

prediction. Through our comprehensive exploration, we have established that the choice of 

method is significantly influenced by the nature and requirements of the time series data, its 

properties, and the specific application scenario. 

We found that statistical techniques like ARIMA, ETS, and STL can effectively model regular 

patterns in time series data and identify anomalies as deviations from these models. These 

methods are particularly useful for data with strong trends or seasonality, although they may fall 

short when faced with highly complex or non-linear data structures. On the other hand, the 

Isolation Forest algorithm isolates anomalies based on their shorter average path lengths, 

making it a powerful tool for datasets with large feature spaces, yet its performance can be 

influenced by the choice of hyperparameters. 
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Moreover, this research highlighted the potential of deep learning-based methods such as 

Autoencoders and Long Short-Term Memory Units (LSTMs) in anomaly detection. 

Autoencoders exploit high reconstruction errors to detect anomalies, while LSTMs identify 

anomalies based on significant deviations from predicted values. These techniques have shown 

considerable promise in handling complex, multivariate time series data, but they require ample 

data for training and may be computationally intensive. 

Our research suggests that the selection of the optimal method for anomaly detection in IoT is 

largely a contextual decision. It is critical to consider the data's characteristics, such as its 

multivariate or univariate nature, the presence of trends or seasonality, and the type of 

anomalies. Other methods like K-means clustering, DBSCAN, and XGBoost may also be 

applicable depending on the specific requirements of the IoT data. 
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