
AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 10

Anomaly Detection in Internet of Things

(IoT) Time Series Data: A Comparative

Study of Various Techniques
Jonathan Rhoads

Research associate, Botfed Research Society

Abstract

Anomaly detection plays an integral role in a broad range of applications within the Internet of

Things (IoT), such as preventive maintenance, health monitoring, fraud detection, and fault

prediction. This study undertakes a comprehensive exploration of the methods commonly used

for anomaly detection in IoT time series data. These methods encompass Statistical Techniques,

Isolation Forest, Autoencoder Neural Networks, and Long Short-Term Memory Units (LSTMs),

each with their unique strengths and challenges. Statistical techniques, such as ARIMA, ETS,

and STL, model the regular pattern of a time series via a stochastic model, highlighting

anomalies as instances that deviate from this model. The Isolation Forest algorithm, on the other

hand, isolates anomalies based on their shorter average path lengths in an ensemble of Isolation

Trees. Autoencoders and LSTMs, as types of artificial neural networks, detect anomalies via

high reconstruction error and significant deviation from predicted values, respectively. The

research also acknowledges the applicability of other methods such as K-means clustering,

DBSCAN, and XGBoost according to the specific requirements of IoT data. Selection of an

appropriate model depends largely on the data characteristics and the particular use case, with

data properties including multivariate or univariate nature, presence of trends or seasonality, and

type of anomalies playing a crucial role.

Keywords: Anomaly Detection, IoT, Time Series, Machine Learning, Neural Networks

Introduction

The Internet of Things, often abbreviated as IoT, marks a pivotal advancement in the field of

technology, rapidly reshaping numerous sectors of society. It is a concept that refers to the

network of interconnected devices, objects, and systems, which are capable of collecting and

sharing data without requiring human-to-human or human-to-computer interaction [1], [2].

Each device or 'thing' in this connected network has a unique identity and the ability to

automatically transfer data over a network. The emergence of IoT is driven by an expansion of

the Internet, shrinking hardware, progress in data analytics, and the rise of cloud computing.

These technological advancements have made it feasible and cost-effective to transform

everyday objects into smart devices with added functionality.

The Internet of Things (IoT) is a complex system composed of three major components: sensors,

networks, and applications. Sensors, or "things" in the IoT, are the physical devices that collect

data from the environment. These could be temperature sensors, humidity sensors, light sensors,

motion sensors, etc. They are equipped with unique identifiers and have the ability to transfer

data over a network without requiring human-to-human or human-to-computer interaction.

Different sensors have different capabilities; for example, some sensors are only able to collect

data, while others are able to act based on the data they receive [3], [4].

Networks play a crucial role in connecting the "things" in the IoT to the internet. They enable

data transfer from sensors to servers, typically via the internet. Networks in IoT might be made

up of wired connections (Ethernet, for instance) or wireless connections (such as Wi-Fi, cellular

networks, Bluetooth, Zigbee, or LoRaWAN). The choice of network often depends on factors

such as data transmission speed requirements, power consumption, cost, and geographical

coverage.

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 11

Applications are the final component of the IoT [5], [6]. They collect, process, and analyze the

data gathered by sensors and transmitted via networks. Applications in IoT can range from

simple mobile apps that display data from a personal fitness tracker to complex, machine

learning-driven software that can predict equipment failures in a factory before they happen

based on sensor data. The application not only makes sense of the raw data but also provides

actionable insights that can be used to improve efficiency, safety, comfort, or other important

factors in a given context [7].

IoT connectivity refers to the communication technologies used to connect the "things" in the

IoT with each other and with the internet. These technologies can be broadly categorized into

short-range (or local) and long-range (or wide area) networks. Short-range networks include

technologies like Bluetooth, Zigbee, and Wi-Fi. They are typically used for applications where

the devices are located close to each other, such as in a smart home or a manufacturing plant.

On the other hand, long-range networks include technologies like cellular (4G, 5G), LoRaWAN,

and NB-IoT. These are often used for applications where the devices are spread over a larger

geographical area, like a smart city or a supply chain. Each of these connectivity options has its

own pros and cons. For example, while Wi-Fi provides high data rates, it consumes more power

and has a limited range compared to technologies like LoRaWAN.

The operation of an IoT system involves several steps and each of the key components plays a

vital role in this process. The first step in the IoT process chain is data collection, which is

performed by the sensors. Sensors continuously monitor their environment and collect data. For

example, a temperature sensor in a smart home would continuously monitor the temperature

and generate data representing the temperature levels [8].

Once the data is collected, it needs to be sent to a server or cloud platform where it can be

processed and analyzed. This is where the network comes in. The sensors send the data they've

collected over the network to the server [9], [10]. This can be done in real-time or at intervals,

depending on the requirements of the IoT application. For instance, a health monitoring

application would require real-time data transfer, while a soil moisture monitoring system in a

farm might only require data updates once a day [11].

Once the data arrives at the server, it is processed and analyzed by the application. The

application might apply complex algorithms or machine learning models to the data to derive

insights [12]–[14]. For example, a factory monitoring application might analyze sensor data to

predict when a machine is likely to fail, allowing for preventative maintenance [15].

The final step in the IoT process chain is action. Based on the insights derived from the data,

the application might trigger certain actions. These could be as simple as sending a notification

to a user's phone, or as complex as automatically adjusting the settings of a machine in a factory

to prevent a predicted failure. This closes the loop in the IoT process chain, with the "things" in

the IoT collecting data, the data being transferred and processed, and the insights from the data

being used to take action.

Different techniques

Statistical techniques for anomaly detection have been in use for a considerable amount of time

and are among the most tried-and-true methods of discerning irregularities in datasets. These

techniques operate under the assumption that the normal pattern of a time series dataset can be

modeled using a stochastic or random process model, and anomalies are defined as those

instances that do not conform to this model. There are numerous statistical methods that can be

employed for this purpose, and among the most well-known are Autoregressive Integrated

Moving Average (ARIMA), Exponential Smoothing (ETS), and Seasonal and Trend

decomposition using Loess (STL).

The Autoregressive Integrated Moving Average (ARIMA) is a popular statistical method used

for forecasting time series data. ARIMA models are based on the idea that the information in

the past values of the time series can alone be used to predict the future points [16], [17]. An

ARIMA model is characterized by three parameters: (1) the order of the autoregressive part (p),

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 12

(2) the degree of differencing (d), and (3) the order of the moving-average part (q). The

identification of these parameters is usually done by inspecting the autocorrelation and partial

autocorrelation plots. Once the ARIMA model is fitted, the residuals are calculated and tested

for randomness. Any non-random patterns could indicate an anomaly.

Exponential Smoothing (ETS) is another classic time series forecasting method. ETS models

are suitable for non-stationary data and can handle trends and seasonality. The core idea behind

ETS is to give more weight to recent observations and less weight to older ones. Depending on

the presence of trend and seasonality, different variations of ETS are used such as Simple

Exponential Smoothing (no trend or seasonality), Double Exponential Smoothing (trend but no

seasonality), and Triple Exponential Smoothing (both trend and seasonality). After fitting the

ETS model, residuals are extracted and checked for anomalies, which are usually indicated by

significant deviations.

The Seasonal and Trend decomposition using Loess (STL) is a method that decomposes a time

series into three components: trend, seasonal, and remainder (or irregular) components [18].

The 'Loess' in STL stands for locally estimated scatterplot smoothing, which is a non-parametric

regression method that combines multiple regression models in a k-nearest-neighbor-based

meta-model. STL has the advantage of being able to handle any type of seasonality, not only

annual but also daily, weekly, etc. After the time series is decomposed, anomalies can be easily

detected in the remainder component as they are the instances that could not be explained by

the trend and the seasonal components.

However, it is important to note that while these statistical methods are powerful, they are not

without limitations [19]–[21]. For example, ARIMA models assume linearity and Gaussian

errors, which might not hold in all situations. ETS methods, although capable of handling trend

and seasonality, might struggle with non-linear patterns or when the trend and seasonal patterns

change over time. STL, on the other hand, assumes that the seasonality is of known and constant

period, which might not be true in some cases. Furthermore, all these methods work best on

long time series with at least a few seasons of data.

Despite their limitations, statistical methods are a fundamental part of any toolbox for time

series analysis and anomaly detection. They provide a solid statistical foundation, upon which

more modern and complex methods, like machine learning, have been built. But their

importance does not diminish with the advent of these newer techniques. On the contrary,

statistical methods often serve as a first line of defense in the process of anomaly detection,

providing initial insights and helping to inform more complex analyses [22].

Isolation Forest is a unique and innovative anomaly detection method. Unlike traditional

methods which operate by learning and establishing a profile of what's normal and then

identifying anything that doesn't fit this profile as an anomaly, Isolation Forest takes a different

approach by isolating anomalies. It's an unsupervised learning algorithm that builds an ensemble

of "Isolation Trees" or "iTrees" for a given dataset, with anomalies characterized as instances

that have shorter average path lengths on these iTrees [23], [24].

The core idea behind Isolation Forest is that anomalies are data points that are few and different,

which should make them easier to 'isolate' from the rest of the data. The algorithm operates by

randomly selecting a feature from the dataset and then randomly selecting a split value between

the maximum and minimum values of that feature [25], [26]. This process recursively continues,

and it results in a tree structure, the iTree, where the path length from the root node to the

terminating node is indicative of how anomalous the data point is [27].

The reasoning here is that if a data point is an anomaly, it should not conform to the general

pattern of the data and should be easier to isolate, leading to a shorter path length in the iTree.

On the other hand, 'normal' data points, which conform to the general pattern, are harder to

isolate and thus result in longer path lengths.

A few features make Isolation Forest particularly appealing. For one, it doesn't require a normal

profile to be established first, as is the case with most traditional methods. This makes it more

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 13

adaptive to changes in what's considered 'normal'. Also, since it's not distance-based, Isolation

Forest is more immune to the curse of dimensionality and can handle high-dimensional data

more effectively than many traditional anomaly detection methods.

Isolation Forest constructs multiple iTrees on different sub-samples of the dataset, creating an

'ensemble' of iTrees. The anomaly score is then calculated as the average of the path lengths for

a data point across all the iTrees. A shorter average path length indicates a higher likelihood of

a point being an anomaly.

Like any method, Isolation Forest has its limitations. For instance, it might struggle with

detecting global anomalies if the dataset has too many dimensions. Also, if the anomalies are

'swamped' or masked by normal points and hence are not easily 'isolatable', Isolation Forest may

struggle to detect them. Despite these limitations, Isolation Forest is a highly effective and

efficient method for detecting anomalies, especially for high-dimensional datasets or when the

definition of 'normal' changes over time[28]–[30] .

In summary, Isolation Forest is an innovative approach that shifts the focus from profiling

'normal' data points to isolating anomalies. It's a powerful and efficient method for anomaly

detection, particularly suited to situations where the 'normal' is evolving, or where the data is

high-dimensional. Its unique approach and robust performance make it a vital tool in the data

scientist's toolbox for anomaly detection.

Autoencoder Neural Networks are a type of artificial neural network primarily used for learning

efficient representations of input data, also known as codings. Autoencoders are a self-

supervised learning technique that leverages the principles of data encoding and decoding for

anomaly detection. Their architecture is symmetric, consisting of an encoder that compresses

the input into a latent-space representation, and a decoder that reconstructs the input from this

representation [31], [32].

The primary idea behind using autoencoders for anomaly detection is that they are trained to

minimize reconstruction error — the difference between the original input and the reconstructed

output [33]. If the input data are normal instances, autoencoders can learn their structure

effectively, leading to a low reconstruction error. On the other hand, if the input data are

anomalies (which should be rare and significantly different from normal instances),

autoencoders will struggle to reconstruct these instances accurately, leading to a high

reconstruction error.

During the training process, the autoencoder learns to extract meaningful features from the input

data in the encoding stage and uses these features to reconstruct the input in the decoding stage.

The goal is to create a compact, efficient representation of the data that captures its most

important features, which can then be used to reproduce the original input with a high degree of

fidelity [32], [34].

In anomaly detection, autoencoders are typically trained on normal instances only, allowing

them to learn the pattern of normal data thoroughly. Once trained, the autoencoder can then be

used to reconstruct new instances. If these new instances are similar to the normal instances the

model was trained on, they can be accurately reconstructed, and the reconstruction error will be

low. However, if these new instances are significantly different or anomalous, the autoencoder

will have difficulty accurately reconstructing them, and the reconstruction error will be high.

Therefore, a high reconstruction error can be a signal of an anomaly[35] .

The power of autoencoders comes from their ability to handle complex and high-dimensional

data, their flexibility and adaptability, and their capacity to capture non-linear relationships in

the data. However, they also have limitations [36], [37]. The performance of autoencoders can

significantly depend on the choice of architecture (number of layers, number of nodes per layer,

etc.), and the selection of a suitable architecture requires domain knowledge and experience.

Moreover, autoencoders require large amounts of data and computational resources for training.

Despite these challenges, autoencoders have proven to be an effective tool for anomaly detection

in various domains, including fraud detection, industrial damage detection, and medical

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 14

anomaly detection, to name a few. By focusing on the reconstruction of input data, autoencoders

provide an intuitive and powerful approach for identifying instances that do not conform to the

norm, making them a valuable tool in the field of anomaly detection [38], [39].

Long Short-Term Memory Units (LSTMs) are a specialized type of Recurrent Neural Network

(RNN) that have the ability to learn and remember information over long sequences of data,

making them particularly well-suited for handling time series data and hence, for time series

anomaly detection [40].

In time series anomaly detection, an LSTM network can be trained on normal sequences of data,

thereby enabling it to learn the inherent temporal dependencies and patterns within these

sequences. Essentially, the LSTM learns to predict the next value in a sequence based on its

understanding of the pattern in the prior data points. This pattern learning and prediction

capability forms the basis for anomaly detection [41], [42].

For normal data, the LSTM's prediction for the next data point should align well with the actual

value, resulting in a low prediction error. However, for anomalous data, which by definition

deviates from the normal pattern, the LSTM's prediction is likely to be significantly off from

the actual value, resulting in a high prediction error. This high prediction error is therefore an

indicator that an anomaly has occurred.

LSTM's advantage lies in its ability to handle long sequences of data and its memory capability.

Traditional RNNs suffer from the vanishing gradient problem, where the contribution of

information decays geometrically over time, making them unable to handle long sequences and

causing them to forget the earlier data points. LSTMs solve this problem with a unique design

of memory cell which includes a 'forget gate', an 'input gate', and an 'output gate'. These elements

work together to regulate the addition and removal of information to and from the memory cell,

allowing LSTMs to maintain and access information over a longer period of time [43].

Despite the strengths of LSTMs, there are some challenges. Like other deep learning methods,

LSTMs require a significant amount of data and computational resources for training. They can

also be sensitive to the choice of hyperparameters and might require careful tuning to achieve

optimal performance. Moreover, as a black-box model, LSTMs lack interpretability which can

be a hindrance in scenarios where understanding the reasoning behind a prediction is important.

Nevertheless, due to their ability to understand and learn from long sequences of data, LSTMs

have proven to be a powerful tool for anomaly detection in time series data. They have been

successfully applied in various domains such as fraud detection, health monitoring, and network

intrusion detection. Through their unique design, LSTMs are able to identify anomalies in time-

dependent data where traditional methods might fail, thereby making them an indispensable tool

in the field of time series anomaly detection [44], [45].

Conclusion

This research has presented an in-depth analysis of the commonly used methods for anomaly

detection in the context of the Internet of Things (IoT), a crucial area with wide-ranging

applications such as preventive maintenance, health monitoring, fraud detection, and fault

prediction. Through our comprehensive exploration, we have established that the choice of

method is significantly influenced by the nature and requirements of the time series data, its

properties, and the specific application scenario.

We found that statistical techniques like ARIMA, ETS, and STL can effectively model regular

patterns in time series data and identify anomalies as deviations from these models. These

methods are particularly useful for data with strong trends or seasonality, although they may fall

short when faced with highly complex or non-linear data structures. On the other hand, the

Isolation Forest algorithm isolates anomalies based on their shorter average path lengths,

making it a powerful tool for datasets with large feature spaces, yet its performance can be

influenced by the choice of hyperparameters.

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 15

Moreover, this research highlighted the potential of deep learning-based methods such as

Autoencoders and Long Short-Term Memory Units (LSTMs) in anomaly detection.

Autoencoders exploit high reconstruction errors to detect anomalies, while LSTMs identify

anomalies based on significant deviations from predicted values. These techniques have shown

considerable promise in handling complex, multivariate time series data, but they require ample

data for training and may be computationally intensive.

Our research suggests that the selection of the optimal method for anomaly detection in IoT is

largely a contextual decision. It is critical to consider the data's characteristics, such as its

multivariate or univariate nature, the presence of trends or seasonality, and the type of

anomalies. Other methods like K-means clustering, DBSCAN, and XGBoost may also be

applicable depending on the specific requirements of the IoT data.

References

[1] E. F. I. Raj, M. Appadurai, S. Darwin, and E. F. I. Rani, “Internet of things (IoT) for

sustainable smart cities,” Internet Things (IoT) Eng. Appl., 2022.

[2] A. Gopinath, S. Sivakumar, D. Ranjani, S. Kumari, V. Perumal, and R. B. R. Prakash, “A

Communication System Built on the Internet of Things for Fully Autonomous Electric

Cars,” in 2023 7th International Conference on Intelligent Computing and Control Systems

(ICICCS), 2023, pp. 1515–1520.

[3] S. Gadde, E. Karthika, R. Mehta, S. Selvaraju, W. B. Shirsath, and J. Thilagavathi, “Onion

growth monitoring system using internet of things and cloud,” Agricultural and Biological

Research, vol. 38, no. 3, pp. 291–293, 2022.

[4] S. S. I. Samuel, “A review of connectivity challenges in IoT-smart home,” in 2016 3rd

MEC International Conference on Big Data and Smart City (ICBDSC), 2016, pp. 1–4.

[5] M. Bilal, “A review of internet of things architecture, technologies and analysis

smartphone-based attacks against 3D printers,” arXiv preprint arXiv:1708.04560, 2017.

[6] S. Heitlinger, N. Bryan-Kinns, and R. Comber, “The Right to the Sustainable Smart City,”

in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,

Glasgow, Scotland Uk, 2019, pp. 1–13.

[7] S. Shashi Devi, S. Gadde, K. Harish, C. Manoharan, R. Mehta, and S. Renukadevi, “IoT

and image processing Techniques-Based Smart Sericulture Nature System,” Indian J.

Applied & Pure Bio, vol. 37, no. 3, pp. 678–683, 2022.

[8] S. Umamaheswar, L. G. Kathawate, W. B. Shirsath, S. Gadde, and P. Saradha, “Recent

turmeric plants agronomy analysis and methodology using Artificial intelligence,”

International Journal of Botany Studies, vol. 7, no. 2, pp. 233–236, 2022.

[9] J. Xu, J. Yao, L. Wang, Z. Ming, K. Wu, and L. Chen, “Narrowband Internet of Things:

Evolutions, Technologies, and Open Issues,” IEEE Internet of Things Journal, vol. 5, no.

3, pp. 1449–1462, Jun. 2018.

[10] T. S. Gunawan et al., “Prototype design of smart home system using internet of things,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 7, no. 1, pp.

107–115, 2017.

[11] S. M et al., “Analysis of Hydroponic System Crop Yield Prediction and Crop IoT-based

monitoring system for precision agriculture,” in 2022 International Conference on Edge

Computing and Applications (ICECAA), 2022, pp. 575–578.

[12] S. Durga, R. Nag, and E. Daniel, “Survey on Machine Learning and Deep Learning

Algorithms used in Internet of Things (IoT) Healthcare,” in 2019 3rd International

Conference on Computing Methodologies and Communication (ICCMC), 2019, pp. 1018–

1022.

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 16

[13] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT Security Techniques Based on Machine

Learning: How Do IoT Devices Use AI to Enhance Security?,” IEEE Signal Process. Mag.,

vol. 35, no. 5, pp. 41–49, Sep. 2018.

[14] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth,

“Machine learning for internet of things data analysis: a survey,” Digital Communications

and Networks, vol. 4, no. 3, pp. 161–175, Aug. 2018.

[15] K. Thiagarajan, C. K. Dixit, M. Panneerselvam, C. A. Madhuvappan, S. Gadde, and J. N.

Shrote, “Analysis on the Growth of Artificial Intelligence for Application Security in

Internet of Things,” in 2022 Second International Conference on Artificial Intelligence and

Smart Energy (ICAIS), 2022, pp. 6–12.

[16] M. Valipour, “Long-term runoff study using SARIMA and ARIMA models in the United

States,” Meteorol. Appl., vol. 22, no. 3, pp. 592–598, Jul. 2015.

[17] S. Wang, C. Li, and A. Lim, “Why Are the ARIMA and SARIMA not Sufficient,” arXiv

[stat.AP], 16-Apr-2019.

[18] S. Jahandari, A. Kalhor, and B. N. Araabi, “Online forecasting of synchronous time series

based on evolving linear models,” IEEE Transactions on, 2018.

[19] M. Farsi et al., “Parallel genetic algorithms for optimizing the SARIMA model for better

forecasting of the NCDC weather data,” Alex. Eng. J., vol. 60, no. 1, pp. 1299–1316, Feb.

2021.

[20] A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, and K. Kanhaiya, “Study

and analysis of SARIMA and LSTM in forecasting time series data,” Sustainable Energy

Technologies and Assessments, vol. 47, p. 101474, Oct. 2021.

[21] H. Wang, L. Liu, S. Dong, and Z. Qian, “A novel work zone short-term vehicle-type

specific traffic speed prediction model through the hybrid EMD–ARIMA framework,” B:

Transport Dynamics, 2016.

[22] K. Nova, A, Umaamaheshvari, S. S. Jacob, G. Banu, M. S. P. Balaji, and S, Srithar, “Floyd–

Warshalls algorithm and modified advanced encryption standard for secured

communication in VANET,” Measurement: Sensors, vol. 27, p. 100796, Jun. 2023.

[23] J. Lesouple, C. Baudoin, M. Spigai, and J.-Y. Tourneret, “Generalized isolation forest for

anomaly detection,” Pattern Recognit. Lett., vol. 149, pp. 109–119, Sep. 2021.

[24] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation forest and local outlier

factor,” in Proceedings of the Conference on Research in Adaptive and Convergent

Systems, Chongqing, China, 2019, pp. 161–168.

[25] Y. Chabchoub, M. U. Togbe, A. Boly, and R. Chiky, “An In-Depth Study and Improvement

of Isolation Forest,” IEEE Access, vol. 10, pp. 10219–10237, 2022.

[26] P. Karczmarek, A. Kiersztyn, W. Pedrycz, and E. Al, “K-Means-based isolation forest,”

Knowledge-based systems, 2020.

[27] S. Jahandari and D. Materassi, “Analysis and compensation of asynchronous stock time

series,” Proc. Am. Control Conf., 2017.

[28] K. Nova, “The Art of Elasticity and Scalability of Modern Cloud Computing World for

Automation,” American Journal of Computer Architecture, vol. 6, no. 1, pp. 1–6, 2019.

[29] M. Tokovarov and P. Karczmarek, “A probabilistic generalization of isolation forest,” Inf.

Sci. , vol. 584, pp. 433–449, Jan. 2022.

[30] G. Staerman and P. Mozharovskyi, “Functional isolation forest,” Asian Conference, 2019.

[31] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” 2008 eighth ieee international,

2008.

[32] D. Xu, Y. Wang, Y. Meng, and Z. Zhang, “An Improved Data Anomaly Detection Method

Based on Isolation Forest,” in 2017 10th International Symposium on Computational

Intelligence and Design (ISCID), 2017, vol. 2, pp. 287–291.

[33] A. Bodepudi and M. Reddy, “Spoofing Attacks and Mitigation Strategies in Biometrics-

as-a-Service Systems,” ERST, vol. 4, no. 1, pp. 1–14, Feb. 2020.

AI, IoT and the Fourth Industrial Revolution Review

VOLUME 13, ISSUE 7

Page | 17

[34] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended Isolation Forest,” IEEE Trans. Knowl.

Data Eng., vol. 33, no. 4, pp. 1479–1489, Apr. 2021.

[35] S. Jahandari, A. Kalhor, and B. N. Araabi, “A self tuning regulator design for nonlinear

time varying systems based on evolving linear models,” Evolving Systems, 2016.

[36] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance Weighted Autoencoders,” arXiv

[cs.LG], 01-Sep-2015.

[37] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial Autoencoders,”

arXiv [cs.LG], 18-Nov-2015.

[38] A. Makhzani and B. J. Frey, “Pixelgan autoencoders,” Adv. Neural Inf. Process. Syst., 2017.

[39] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing

robust features with denoising autoencoders,” in Proceedings of the 25th international

conference on Machine learning, Helsinki, Finland, 2008, pp. 1096–1103.

[40] S. Jahandari and A. Srivastava, “Detection of Delays and Feedthroughs in Dynamic

Networked Systems,” IEEE Control Systems Letters, vol. 7, pp. 1201–1206, 2023.

[41] A. Makhzani and B. Frey, “k-Sparse Autoencoders,” arXiv [cs.LG], 19-Dec-2013.

[42] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” in Proceedings

of ICML Workshop on Unsupervised and Transfer Learning, 2012, vol. 27, pp. 37–49.

[43] A. Bodepudi and M. Reddy, “Cloud-Based Gait Biometric Identification in Smart Home

Ecosystem,” International Journal of Intelligent Automation and Computing, vol. 4, no. 1,

pp. 49–59, 2021.

[44] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” Foundations

and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

[45] W. H. Lopez Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoencoders,” in

Machine Learning, A. Mechelli and S. Vieira, Eds. San Diego, CA: Elsevier, 2020, pp.

193–208.

