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Abstract 

With the exponential growth of data from diverse sources, organizations are increasingly looking 

to integrate and analyze multi-modal data to gain deeper insights. Structured data from databases 

and sensors can provide quantitative insights, while unstructured data from text, images, video and 

audio can provide contextual, qualitative understanding. Multi-modal data fusion enables a more 

comprehensive view by combining the breadth of unstructured data with the depth of structured 

data. This paper provides an overview of multi-modal data fusion techniques to enhance analytics. 

It covers methods like entity matching, linking and resolution that integrate structured and 

unstructured data at the entity-level. Techniques like feature extraction and sensor fusion that 

consolidate data at the feature-level are also discussed. The relative strengths and limitations of 

different techniques are considered in the context of analytics objectives. Challenges such as 

semantic alignment, data veracity, and cognitive load are examined. The paper concludes with best 

practices and future directions for multi-modal data fusion. 
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Introduction 

The digital revolution has enabled an unprecedented exponential growth in data volume, variety, 

and velocity. As per IDC estimates, the global datasphere is expected to grow from 33 zettabytes 

in 2018 to 175 zettabytes by 2025. Data is being generated from diverse sources in different 

modalities and formats. Sensor data from Internet of Things (IoT) devices provides detailed 

quantitative measurements. Text documents, emails, social media posts, audio recordings and 

videos capture unstructured qualitative information. Images and multimedia encode perceptual 

knowledge [1]. The result is a complex amalgamation of multi-modal big data encompassing both 

structured and unstructured information. Structured data refers to quantitative information with a 

well-defined schema that is readily analyzable using standard queries and algorithms. It is typically 

generated from organizational databases, transactional systems, ERP applications, BI tools, 

spreadsheets, sensory devices and other systems of record. Structured data fields have precise 

semantics and relationships enabling systematic access. For example, relational databases contain 

interlinked tables with columns corresponding to different data attributes [2]. Time-series sensors 

record measurements at specific time intervals. GPS data contains latitude and longitude coordinate 

pairs. This allows structured data to be efficiently stored, indexed, processed and mined. The 

quantitative metrics also facilitate data-driven analytics, predictions, optimization, and automation. 

However, structured data lacks the contextual details and qualitative insights needed for a nuanced 

understanding of events, behaviors, and entities [3]. 

In contrast, unstructured data refers to information without a predefined schema or organization. It 

comprises text documents, emails, social media posts, audio recordings, videos, images, and other 

multimedia content [4], [5]. While unstructured data accounts for over 80% of organizational 

information, it poses multiple analytics challenges [6]. Ambiguities in natural language and the 

diversity of data formats make it difficult to systematically extract signals. But unstructured data 

provides vital contextual knowledge and qualitative insights that cannot be captured by structured 
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data alone. The sentiments, opinions, cultural trends, relationships, and conceptual details within 

unstructured data enable a more holistic understanding of entities and events. With the concurrent 

explosion of both structured and unstructured big data, organizations are increasingly looking to 

integrate these heterogeneous data types to drive competitive advantage [7]. Neither structured nor 

unstructured data alone provides sufficient depth and breadth of understanding. Structured data 

enables quantitative measurement, monitoring, and optimization but lacks contextual details. 

Unstructured data provides qualitative intelligence but cannot easily be analyzed at a scale. The 

fusion of multi-modal data sources harnesses the best of both worlds - the depth of structured 

metrics and the breadth of contextual, unstructured signals [8], [9]. 

Multi-modal data fusion powers a wider range of analytics applications by enabling a unified view. 

Integrating structured and unstructured data facilitates both precise measurement as well as 

nuanced contextual understanding [10]. Some key analytics use cases powered by multi-modal data 

fusion include: 

- Augmenting business metrics and operational data with customer feedback and market 

intelligence for strategic planning and product improvement . 

- Enhancing structured risk models using earnings call transcripts, regulatory filings, and news 

events analysis. 

- Improving predictive maintenance by correlating structured sensor data with unstructured 

technician maintenance logs and expert knowledge. 

- Generating personalized recommendations by connecting user transactions and structured profile 

attributes with unstructured demographics, social media activity, and multimedia preferences. 

- Detecting financial fraud by combining structured anomalies and transaction patterns with audio, 

text and network forensics. 

- Deriving market insights by extracting structured semantic metadata from unstructured text, 

audio, video and image content. 

Across domains, multi-modal data fusion enables both a panoramic perspective through the breadth 

of unstructured data as well as precise measurements and details through structured data. It provides 

the contextual augmentation needed for advanced analytics. This paper examines the techniques 

and technologies that enable meaningful fusion of structured and unstructured big data for 

actionable intelligence and enhanced decision making. 

Background 

Structured Data: Structured data refers to quantitative information with a predefined schema that 

enables easy storage, search and analysis. Common structured data sources include organizational 

databases, spreadsheets, financial/operational systems and sensory devices. Structured data fields 

have explicit meanings and relationships that allow systematic access and analysis [11]. Examples 

include customer contact records, sales transaction logs, sensor measurements of speed or 

temperature, and GPS coordinates. Structured data can be readily processed by algorithms and tools 

to generate reports, dashboards, alerts and predictive models. The precise metrics enable data-

driven decision making and automation. However, structured data lacks contextual details to enable 

a nuanced understanding of events and behaviors [12].  

Unstructured Data: In contrast, unstructured data refers to qualitative information without a 

predefined structure or schema. It includes text documents, social media posts, audio recordings, 

images, videos and other multimedia content. Unstructured data comprises over 80% of 

organizational information but is difficult to systematically analyze due to ambiguities in natural 

language and differences in formats. However, unstructured data provides vital contextual insights 

into customer sentiments, cultural trends, public perceptions, and other qualitative factors that 

structured data cannot capture [13]–[15]. Analyzing unstructured data often requires machine 

learning techniques like natural language processing, image recognition and speech analysis to 

extract meaningful signals. Unstructured data enables a more holistic and nuanced view of the 

world, complementing structured metrics. 

Analytics Applications: Integrating structured and unstructured data enables a wider range of 

analytics applications to drive competitive advantage. Multi-modal data fusion augments 
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performance measurement and process optimization with deeper customer and market intelligence. 

Some key analytics use cases enabled by multi-modal data include: 

- Customer sentiment analysis - Combine structured customer ratings with unstructured feedback, 

reviews and social media posts to understand satisfaction levels and pain points.  

- Risk modelling - Enhance structured financial risk models with analysis of qualitative earnings 

call data, news events, and regulatory filings. 

- Predictive maintenance - Correlate structured sensor data with unstructured maintenance logs and 

expert knowledge to predict equipment failures. 

- Recommendation systems - Build holistic user profiles by connecting structured transactions with 

unstructured demographics, social media activity and text/multimedia preferences. 

- Fraud detection - Identify structured anomalies as well as contextual red flags from text, audio 

and network patterns. 

- Content analytics - Extract structured semantic metadata from unstructured text, images, audio 

and video to generate insights. 

Multi-modal data fusion powers these applications by connecting the breadth of unstructured data 

with the depth of structured data. The subsequent sections examine fusion techniques for different 

data modalities and analytic objectives. 

Multi-Modal Data Fusion Techniques 

Multi-modal data fusion integrates discrete data types at different levels of abstraction to create 

integrated meaning. Key techniques can be categorized as entity-level, feature-level or decision-

level fusion based on the consolidation target: 

Entity-Level Fusion  

Entity-level fusion associates different data objects that correspond to the same real-world entity. 

It enables a unified view by connecting heterogeneous data records referring to the same person, 

location, event or concept. Techniques include: 

- Entity matching - Links records from multiple datasets referring to the same entity based on 

similarity of identifying attributes. This allows merging of disparate data sources.  

- Entity resolution - Deduplicates entity references from different sources by data cleaning and 

integration. 

- Entity linking - Disambiguates entity mentions unstructured data by linking to canonical 

definitions in a structured knowledge base. For example, linking “Washington” in text to the proper 

person vs. place entity. 

Entity-level fusion provides a critical consolidation of heterogeneous data at the foundation. It 

enables augmentation of structured records with contextual details and linkage across datasets for 

a 360-degree view. However, entity consolidation is also challenging due to data veracity issues 

and computational complexity for large datasets. 

Table 1 compares the different techniques for entity-level fusion: 

Technique Description Strengths Limitations 

Entity 

matching 

Linking records from 

multiple datasets 

referring to the same 

real-world entity based 

on similarity of 

identifying attributes 

- Allows merging of 

disparate data sources 

into unified view.- 

Scalable to large datasets 

with blocking, filtering 

and approximate 

matching techniques 

- Computationally 

expensive.- Accuracy 

challenged by poor data 

quality, missing values.- 

Requires tuning 

similarity thresholds 

Entity 

resolution 

Deduplicating multiple 

entity references from 

different sources 

through data cleaning 

and integration 

- Consolidates references 

to ensure a single version 

of truth for each entity.- 

Improves data quality by 

handling inconsistencies 

- Quadartic complexity 

without optimization.- 

Ambiguity in 

disambiguating close 

matches 

Entity 

linking 

Disambiguating entity 

mentions in 

unstructured data by 

- Annotates unstructured 

data with formal 

definitions of entities.-

- Knowledge base 

coverage limits context.- 

Ambiguity remains in 



AI, IoT and the Fourth Industrial Revolution Review 

VOLUME 12, ISSUE 12 

Page | 35 

linking to canonical 

definitions in a 

structured knowledge 

base 

Facilitates integration 

with structured data 

absence of sufficient 

context 

 

 

Feature-Level Fusion 

Feature-level fusion consolidates the data at the level of derived variables or features. Features 

extracted from diverse data types are combined into unified feature vectors for integrated mining 

and modelling. For example:  

- Text mining - Extracting sentiment variables from unstructured text data. 

- Audio/video analysis - Generating facial expressions or acoustic features from multimedia.  

- Sensor fusion - Combining readings from multiple sensors into consolidated variables. 

Feature-level fusion enables synthesis of higher-order variables that marshal the strengths of 

diverse data types. However, it can result in very high dimensionality and loss of granularity. 

Feature selection and dimensionality reduction are critical to avoid poor model performance or 

overfitting. The derived features should also be carefully engineered to capture all necessary 

information from the source variables. 

Table 2 illustrates different feature extraction and fusion techniques: 

Technique Description Examples 

Text 

mining 

Extracting semantic 

features from 

unstructured text data 

- Sentiment analysis - Extracting sentiment polarity 

scores.- Topic modelling - Discovering abstract topics 

using LDA.- Embedding - Representing text in dense 

vector space 

Audio 

analysis 

Extracting acoustic 

features from audio 

data 

- Speech recognition - Extracting transcripts.- Speaker 

diarization - Identifying speakers.- Prosody analysis - 

Extracting rhythm, intonation features 

Video 

analysis 

Extracting visual 

features from 

image/video data 

- Object recognition - Detecting objects using CNNs.- 

Activity recognition - Classifying human activities in 

video.- Scene classification - Categorizing 

outdoor/indoor scenes 

Sensor 

fusion 

Combining sensor 

readings into higher-

level features 

- Merging lidar, camera, radar data for environmental 

perception in autonomous vehicles.- Fusing inertial 

sensor data for accurate motion tracking 
 

 

Decision-Level Fusion 

Decision-level fusion consolidates the outputs of independent models built on individual data types. 

For instance, predictive models trained separately on structured data variables and text features can 

be combined through: 

- Voting - Models vote on the overall predicted class. 

- Averaging - Continuous outputs like probabilities are averaged across models. 

- Meta-Classifier - A higher-level model is trained on the base model outputs. 

Decision-level fusion provides a late-stage consolidation of different inference results. However, 

errors or biases from the base models can get propagated to the integrated prediction. The base 

models may also end up redundant if built on similar features. Decision-level fusion works best 

when the data sources and models provide complementary signals. 

Table 3 contrasts different decision-level fusion strategies: 

Fusion 

Strategy 

Description Advantages Disadvantages 

Voting Base models vote on 

overall predicted class 

- Simple to implement. 

- Provides robustness 

against individual model 

failures 

- All models must have 

the same classes. 

- Weights not tunable for 

model importance 
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Averaging Continuous outputs like 

probabilities averaged 

- Intuitive ensemble 

approach. 

- Handles different 

output scales 

- Losses 

complementarity of 

outputs. 

- Sensitive to outliers 

Meta-

classifier 

Higher-level model 

trained on base model 

outputs 

- Learns complex 

interactions between 

models. 

- Weights tuned based on 

validation 

- Prone to overfitting. 

- Interpretability 

challenging 

 

 

The optimal fusion level depends on the problem context. Entity-level fusion is indispensable for 

a unified view and prevents propagation of errors. Feature-level fusion enables synergies through 

joint modelling but requires careful engineering. Decision-level fusion is best for late stage 

synthesis but can compound biases. A combinatorial approach across levels is often most robust for 

analytics. 

Challenges in Multi-Modal Data Fusion 

While offering enriched insights, integrating diverse data types also poses multiple challenges 

including: 

Semantic Alignment With heterogeneous, multi-modal data, a key difficulty is aligning the 

semantics to enable meaningful integration [16]. Structured data fields often lack contextual details 

captured in unstructured data. Low level features extracted from text or multimedia may not 

correspond to high-level abstract concepts. Automated semantic matching and mapping techniques 

like neural embeddings are still imperfect and often need human expertise . 

Data Veracity: Data obtained by fusing multiple sources can suffer from inaccuracies inherited from 

the original sources. Errors may get introduced during incomplete entity linking or inaccurate 

feature extraction. This poses data quality challenges for downstream analytics. Provenance 

tracking, uncertainty modelling and outlier detection are necessary to ascertain veracity. 

Cognitive Load: Joint analysis of mixed data types increases the cognitive load for data scientists. 

Understanding low level multimedia features along with abstract structured data requires broad 

expertise. Diverse data formats also increase the software and infrastructure complexity. 

Specialized multi-modal analytics tools are needed to ease cognitive burdens [2], [17]. 

The fusion process entails iterative refinements using validation data to ensure accurate mapping, 

alignment and integrated metrics generation. Governance frameworks managing data lifecycles, 

models and decisions are also critical to address ethical concerns with fusion techniques. 

Best Practices for Multi-Modal Data Fusion 

Based on the opportunities and challenges, some recommended best practices for fusing structured 

and unstructured data include: 

- Perform fusion iteratively with continuous validation of mapping and alignments. Involve both 

data engineers and domain experts.  

- Build a knowledge graph to represent the consolidated entity-level schema. Use unique persistent 

identifiers for entities. 

- Leverage transfer learning approaches to align vector space representations across modalities. 

- Employ explainable AI techniques to generate human-interpretable features. Assess cognitive 

load. 

- Implement rigorous data provenance tracking and uncertainty modelling for veracity. 

- Develop specialized analytics tools that facilitate multi-modal feature engineering and modelling. 

- Follow modelops and responsible AI practices to address bias, fairness and accountability. 

The field continues to evolve with advances in representation learning, causality modelling and 

human-AI interaction. Next we discuss future directions. 

Future Outlook 

Key developments on the horizon for multi-modal data fusion include: 

- Improved semantic contextualization using large language models and graph embeddings. 

- Reinforcement learning and adversarial techniques for automated feature alignment. 
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- Multimodal generative models like conditional GANs to synthesize fused representations.  

- Causal modelling to infer causative relationships between modalities. 

- Intelligent interfaces and visual analytics to streamline multi-modal analysis. 

- Edge and neuromorphic computing to enable real-time sensor fusion. 

- Blockchain and distributed ledger solutions to manage veracity in fusion. 

As technologies mature, multi-modal data fusion will become more automated, real-time and 

scalable. Next-generation platforms will allow non-technical users to achieve unified insights from 

diverse big data. The future remains promising for augmented intelligence through synthesis of 

broad and deep data. 

Conclusion 

The fusion of multi-modal data sources provides the essential breadth and depth needed for 

comprehensive analytics and intelligence generation. Structured data enables quantification, 

measurement, monitoring and precise analysis [18], [19]. Unstructured data provides the qualitative 

context, sentiments, associations and details absent from structured data. By consolidating their 

complementary strengths, multi-modal data fusion facilitates both a panoramic perspective as well 

as focused insights. It overcomes the inherent limitations of analyzing structured or unstructured 

data in isolation. As elucidated through this paper, a variety of techniques at the entity, feature and 

decision levels exist for integrating heterogeneous data types [20]. Entity-level fusion through 

matching, resolution and linking establishes consolidated views of real-world entities by 

connecting references across datasets. This interlinking of knowledge is the foundation required 

for unified analytics [21]. Feature-level fusion enables synthesis of higher-order derived variables 

that marshal the signals within different modalities. Decision-level fusion supports late stage 

consolidation of inferred knowledge. A combinatorial approach across the levels provides a robust 

framework for analytics over structured and unstructured data [22].  
While promising, multi-modal data fusion poses multiple challenges as well. Semantic alignment 

across modalities remains difficult owing to differences in representations. Techniques like neural 

embeddings have advanced representations learning but still require contextual fine-tuning [23]. 

Data veracity is challenged as inaccuracies can get introduced during entity linking or feature 

extraction. Rigorous validation, uncertainty modelling and provenance tracking is imperative to 

ensure high quality fusion. The increased data diversity also heightens the cognitive load for 

analysts, necessitating advances in human-AI interaction. Automated fusion processes need to 

apply robust data validation, explain ability and responsible AI practices. 

Ongoing advances in Representation learning using large language, graph and multimodal models 

facilitate better semantic contextualization and alignment. Transfer learning and adversarial 

techniques can allow automated adaptation of features across modalities. Multimodal generative 

models like conditional GANs can synthesize fused representations. Causal modelling approaches 

infer causative mechanisms between modalities to select optimal integration techniques [24]. 

Human-centered techniques like interactive visual analytics and natural language interfaces ease 

cognitive burdens. The emergence of edge and quantum computing will enable real-time, low-

latency analytics over fused data. Blockchain and distributed ledger architectures provide 

immutable provenance for enhanced veracity. As these technologies mature, multi-modal data 

fusion will become more flexible, automated, and scalable. It has the potential to become the digital 

analytics paradigm for the foreseeable future, enabling organizations to achieve augmented insights 

and intelligence [25]. With careful application of emerging techniques, end users without extensive 

technical expertise can be empowered to analyze disparate data meaningfully. This democratization 

promises to unlock tremendous latent value from siloed structured and unstructured data [26]. 
In essence, multi-modal data fusion is set to fundamentally transform analytics, intelligence 

generation and data-driven decision making. It overcomes the constraints of single data types to 

provide a holistic digital representation [27]. The synergistic combination of depth, breadth, 

structure and context sets the stage for the next level of actionable knowledge discovery. Realizing 

this vision requires diligent efforts to develop robust technologies while addressing ethics, privacy 

and responsible AI concerns. With sound implementation, multi-modal data fusion can usher in the 
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next frontier of analytics, delivering profound benefits for individuals, organizations and society. 

The future remains promising but prudence paramount. 
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